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Abstract. In this paper, we investigate the problem of view selection
for workloads of conjunctive queries under bag semantics. In particular
we aim to limit the search space of candidate viewsets. In that respect we
start delineating the boundary between query workloads for which cer-
tain restricted search spaces suffice. They suffice in the sense that they
do not compromise optimality in that they contain at least one of the
optimal solutions. We start with the general case, where we give a tight
condition that candidate views can satisfy and still the search space (thus
limited) does contain at least one optimal solution. Preliminary exper-
iments show that this reduces the size of the search space significantly.
Then we study special cases. We show that for chain query workloads,
taking only chain views may miss all optimum solutions, whereas, if we
further limit the queries to be path queries (i.e., chain queries over a
single binary relation), then path views suffice. This last result shows
that in the case of path queries, taking query subexpressions suffice.

1 Introduction

The view selection problem has received significant attention in many data-
management scenarios, such as information integration, data warehousing, web-
site designs, and query optimization. The static version of this problem is to
choose a set of views to materialize over a database schema, such that (a) the
cost of evaluating a set of queries is minimized, and (b) the views fit into a
prespecified storage space. In query optimization, evaluating a set of queries us-
ing previously materialized views can significantly speed-up query processing,
as part of the computation necessary for each query may have been done while
computing views. Moreover, a set of similar queries (e.g. queries with similar
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subexpressions) can be computed efficiently by selecting an appropriate set of
views that exploits these sharing opportunities. In a data warehouse, a successful
selection of views to materialize can preclude costly access to the base relations
and consequently helps to answer a batch of queries in efficient way. Similarly,
the choice of a proper set of views to precompute may improve the performance
of web-sites; because the set of expected queries can be answered quickly [10].

In contrast to the query answering problem using views, where the set of views
is initially given, the view selection problem indicates automated techniques to
produce the appropriate set of materialized views. In this paper, we focus on the
view selection problem using query rewriting techniques, assuming that both
query and view definitions are conjunctive queries. We use bag-semantics, which
means that duplicate occurrences of tuples are allowed to query answers and to
database relations [19]. The “bag-approach” of the problem is more practical
because of its close relationship to the SQL features where bag-relations are
allowed and the duplicate tuples are not eliminated during the query evaluation;
unless explicitly requested (by using the DISTINCT keyword).

The hardness of the view selection, as defined and investigated in [8,2,7,12],
is caused by the bicriteria nature of the problem. These criteria are: (1) for
a given set of views, the selection of the less-costly equivalent rewritings of
the queries and (2) the choice of the appropriate set of views which does not
violate the storage constraint. Bicriteria settings have different variants (and
consequently different solutions and complexity results) depending of which of
the two objective functions of these two criteria is required to be optimized
under the constraint that the value of the other objective function does not
exceed a bound that is given by the designer of the system. In this paper, we
consider the variant of the problem in which we want to find a viewset such
that it does not exceed the storage constraint and is optimum with respect to
the evaluation cost of the query workload. We count the size of a viewset as
the number of tuples required to store all the views in the viewset (however we
notice that all our results hold under a more general count) and the cost of query
evaluation is based on the sum-of-joins cost model for left-linear query plans (the
exact definitions can be found in subsequent section). In [2] the same problem is
investigated and is shown that we can restrict the search space for views in the
viewset only to those views that are generalizations of query subexpressions.

Our contributions in this paper are: a) In Section 4.1, we improve the search
space of [2] by showing that it suffices to consider only the least general gen-
eralizations of query subexpressions. In particular, we show that if we restrict
ourselves to this smaller search space, an optimal solution is always retained,
i.e., a solution which satisfies the storage limit and achieves the optimum value
for the evaluation cost. b) Based on these results, we develop in Section 4.2 an
efficient algorithm for finding an optimal solution. c) We study (Section 5) the
problem for two special cases, namely when all queries in the workload are chain
queries and when they are path queries. In the first case we show that we cannot
restrict the search space to only chain views because we may loose all optimal
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solutions (Section 5.1). In the second case, we show that we can restrict further
the search space to consider only path views (Section 5.2).

2 Related Work

The problem of automatic selection of views to materialize has attracted the in-
terest of many researchers. In [7], the space requirements for the view selection
problem in the context of data warehouse design under set-semantics, are con-
sidered. This paper, also investigates conditions under which the search space of
optimal configurations can be reduced to the views that are subexpressions of
the queries in the workload. In [21,23], the extraction of common subexpressions
of the queries in the workload is studied. The authors in [21], study the problem
of searching for a maximum common subexpression of a workload, while [23] pro-
poses an algorithm for searching for maximum common subexpressions for a sub-
class of select-project-join SQL queries, using query graphs. Another approach
for finding similar subexpressions is proposed in [25] where workloads of select-
project-join-groupby queries are considered. The authors propose a solution for
the multi-query optimization problem which is incorporated in the Microsoft
SQL Server. The algorithm has a lightweight mechanism (table-signatures) to
detect common subexpressions and multiple sharing opportunities.

In [12], it is stated the view selection problem using AND-OR graphs to
represent the query plans. Two types of constraints on materialized views are
assumed, a storage limit and a maintenance-cost constraint. The candidate set
of view configurations are given as input, hence the time of the construction of
view configurations is not considered in the response time of the algorithms.

In [20], the view selection problem assuming a maintenance-cost constraint
in the data warehouse environment and proposed an algorithm based on multi-
query graphs, is studied. In [24], the authors examine greedy/heuristic algorithms
for solving the view-selection problem assuming a maintenance-cost constraint
and OLAP queries in multidimensional data warehouse environment. In [6] the
problem for multidimensional databases is studied and an algorithm that selects
views by reducing significantly the solution space is proposed; considering only
the relevant elements of the multidimensional lattice. The authors considered the
standard SQL notion of group-by and aggregate functions in order to capture
queries with aggregation. In earlier work, Rizzi and Saltarelli [18] presented a
comparative evaluation that uses view materialization and indexing for a single
GSPJ (Group-by-Select-Project-Join) query expressed on a star scheme for the
data warehousing context.

The view selection problem, in the context of multidimensional data ware-
houses, also studied by several authors [14,13,11]. In [14], it is described a system
which was incorporated in Microsoft SQL Server and focuses on selection of both
views and indexes. Earlier, the authors of [13] propose algorithms for selecting
views in the case of data cubes and study the complexity of the problem. In [11],
the work of [13] was further extended to include index selection.

A significant result that underlines the difference of the view selection problem
in the case of queries with and without aggregation is presented in [3]. In this
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work, an algorithm for selecting views is proposed and complexity results are
presented, using a theoretical approach to express GSPJ queries. The authors
also showed that using materialized views to compute aggregate queries results
greater benefits than for purely conjunctive queries; as a view with aggregation
precomputes some of the grouping/aggregation on some of the query’s subgoals.

In [8], Chirkova et al. observed that the complexity of view selection problem
under set semantics, and assuming conjunctive query workload, depends crucially
on the quality of the estimates that a query optimizer has on the size of views. In
[8], it is also shown that an optimal choice of views may involve an exponential
number of views in the size of the database schema. In the same context, in [2],
Afrati et al. study the search space of candidate sets of views, under bag, set
and bag-set semantics. Finally, the problem of selecting minimal-size-views to
materialize has been studied theoretically in [9], where the problem has been
proven decidable and an upper bound is given on this problem’s complexity.

3 Preliminaries

3.1 Basic Definitions

A relation schema is a named relation defined by its name R (called relation
name) and a set A of attributes. A relation instance r for a relation schema
is a collection of tuples over its attribute set. The schemas of the relations
in a database constitute its database schema. A relational database instance
(database, for short) is a collection of stored relation instances. A relation in-
stance can be viewed either as a set or as a bag (or multiset) of tuples. A bag
(or bag-relation [22]) can be thought of as a set of elements with multiplicities
attached to each element. In a set-valued database, all stored relations are sets;
in a bag-valued database, multiset stored relations are allowed. The bag-operators
[22] are similar to the set-operators. The difference is that in bag-selection and
bag-projection duplicate tuples in the result are not eliminated. Concerning the
Cartesian product, the difference is that the multiplicity of each tuple t ob-
tained in R × S from a tuple t1 of R and a tuple t2 of S is m · n, where m is
the multiplicity of t1 and n is the multiplicity of t2. Depending on whether a
database is bag or set-valued and the operators are set or bag operators, the
queries may be computed under set-semantics (considering set-valued databases
and operators), bag-semantics (considering bag-valued databases and operators),
or bag-set semantics (considering set-valued databases and bag-operators). We
consider bag-semantics in this paper.

A query is a mapping from databases to databases, usually specified by a
logical formula on the schema S of the input databases. Typically, the output
database (called query answer) is a database with a single relation. In this paper
we focus on the class of select-project-join SQL queries with equality compar-
isons, a.k.a. safe conjunctive queries (CQs for short). Formally, a conjunctive
query definition [1] is a rule of the form:

Q : q(X) :- g1(X1), . . . , gn(Xn)
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where g1, . . . , gn are database relations and X, X1, . . ., Xn are vectors of vari-
ables or constants. The atom q(X) is the head of Q while the atoms on the
right of :- are said to be the body of Q. Each gi(X i) is also called a subgoal of
Q. The variables in X are called distinguished or head variables of Q, whereas
the variables in X i are called body variables of Q. A body variable which is not
also a head variable is called non-distinguished variable of Q. In this work, we
consider safe conjunctive queries that is CQs whose head variables also occur in
their body. A chain query is a conjunctive query of the following form:

Q : q(X0, Xn) :- r1(X0, X1), r2(X1, X2), . . . , rn(Xn−1, Xn)

where r1, . . . , rn, are binary relations and X0, X1, . . . , Xn are variables. If the
relation symbols r1, . . ., rn are identical then the query is called path query of
length n, denoted as Pn. A view refers to a named query. A view is said to be
materialized if its answer is stored in the database. In this work, we are restricted
to the use of views defined by conjunctive queries called conjunctive views.

A substitution θ [15] is a finite set of the form {X1/Y1, . . . , Xn/Yn}, where
each Yi is a variable or a constant, and X1, . . ., Xn are distinct variables. When
Y1, . . . , Yn are distinct variables, θ is called renaming substitution. In the fol-
lowing we also use the notion of expression to denote a conjunction of atoms.
Let θ = {X1/Y1, . . . , Xn/Yn} be a substitution. Then the instance Eθ of an
expression (resp. a query) E, is the expression (resp. the query) obtained by
simultaneously replacing each occurrence of Xi in E by Yi for all i = 1, . . . , n.

Definition 1. An expression E is a generalization of an expression E′ if E′ is
an instance of E. E is a common generalization of E1, . . ., En, with n > 1 if E
is a generalization of each expression Ei, with 1 ≤ i ≤ n. E is a least common
generalization (or a least general generalization - lgg [16]) of E1, . . ., En, with
n > 1, if E is a common generalization of E1, . . ., En, and for each common
generalization G of E1, . . ., En, the expression G is a generalization of E.

3.2 Query Rewriting and the View Selection Problem

Given a set of views (also, called viewset) V defined on a database schema S, and
a database D on the schema S, then by V(D) we denote the database obtained
by computing all the view relations in V on D. Moreover, let Q be a query
defined on S. A query R is a rewriting of the query Q using the views in V
if all subgoals of R are view atoms defined in V . The expansion Rexp of R is
obtained by replacing all view atoms in the body of R with their corresponding
base relations. Non-distinguished variables in a view definition are replaced with
fresh variables in Rexp. A rewriting R of a query Q on a viewset V is an equivalent
rewriting if R(V(D)) = Q(D), for every database D. In [19], it is proved that a
rewriting R of a query Q, under bag-semantics, is equivalent to Q if and only if
there is an one-to-one containment mapping from Q to the Rexp.

Given a set Q of queries (also called query workload), defined on a schema S,
and a database instance D, we want to find and precompute offline a viewset
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V defined on S, such that the views in V can be used to compute the answers
to all queries in the workload Q. More specifically, our problem, called the view
selection problem, is to find a set of views that when materialized, (a) would
satisfy a set L of constraints on the size of the views, and (b) can be used to
get equivalent rewritings of the queries in Q which minimizes the evaluation
cost of the queries. We refer to the tuple P = (S, Q, D, L) as the input of
view selection problem. The view selection problem is said to be bag-oriented
(resp. set-oriented, or bag-set-oriented) if we consider bag semantics (resp. set
semantics, or bag-set semantics).

In this paper, we consider that the only constraint on materialized views is
a storage limit L (i.e. L = {L}), which is a bound on the size of the views
(which represents the available disk space for storing the views). Our goal is to
choose the viewsets which minimize the evaluation cost of the queries and whose
size will not exceed the limit L. Notice that, if the storage limit is sufficiently
large then we can materialize all query answers, which is an optimal viewset.
The problem becomes interesting when the storage limit is less than that. In the
following we measure the size of a relation R as the number of tuples in R.

Definition 2. Let P = (S,Q,D,L) be a view selection problem input. A viewset
V is said to be admissible for P if (1) V gives equivalent (candidate) rewritings of
all the queries in Q, (2) for every view V ∈ V, there exists at least one equivalent
rewriting of a query in Q that uses V , and (3) V satisfies the constraints L.

The following definition formally defines the solution and optimal solution of
view selection problem for a given input.

Definition 3. Let a view selection problem input P = (S,Q,D,L).

– A solution of P is a tuple (Vadm,R), where Vadm is an admissible viewset
for P and R is a set of equivalent rewritings of the queries in Q using Vadm.

– An optimal solution for P is a solution which minimizes the cost of evalu-
ating the queries in the workload among all solutions of P. The viewset in
an optimal solution is said to be an optimal viewset.

Optimal solutions relate to the estimation of the cost of evaluating a query. We
thus demand from the optimal solutions to minimize a given cost-function that
we employ. We assume that the view relations have been precomputed, hence
we do not assume any cost of computing the views. For conjunctive queries we
use the sum-of-joins cost model which measures the cost of query evaluation as
the sum of the costs of all the joins in the evaluation. More precisely, suppose we
are given a query Q and a database D. We assume use of only left-linear query
plans, where selections are pushed as far as they go and projection is the last
operation. Thus, each plan is a permutation of the subgoals of the query, and
the cost of this query plan on a given database instance D is defined inductively
as follows. For n = 1, the cost of query plan Q = R1 is the size of the relation
R1. For each n ≥ 2, the cost of query plan (. . . ((R1 �� R2) �� R3) �� . . . �� Rn)
over n relations is the sum of the following four values:
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1. the cost of query plan (. . . ((R1 �� R2) �� R3) �� . . . �� Rn−1)
2. the size of relation R1 �� . . . �� Rn−1

3. the size of relation Rn and
4. the size of relation R1 �� . . . �� Rn

The cost of evaluating a query Q on a database D, denoted as C(Q,D), is the
minimum cost over all Q’s query plans when evaluated on D. Moreover, the cost
of a query workload, denoted as C(Q,D), is defined as the sum of the costs of
all queries in the workload. In this paper, although we use the above cost model,
our results also hold for cost-models for which the evaluation cost is increasing
with the size of intermediate relations [11,8,2,4].

4 The Space of Optimal Solutions

In this section, we elaborate on the search space analysis of candidate solutions
for bag-oriented view selection problems, considering that both queries and views
are conjunctive queries/views. The main results of this section are as follows: In
Subsection 4.1, we propose techniques to reduce the search space of candidate
views and demonstrate that if there exists a solution for a given problem input,
then there is at least one optimal solution of a specific form. We refer to these
solutions as the representative (optimal) set of solutions. In Subsection 4.2, an
algorithm is presented that computes the representative set of optimal solutions.

4.1 Representative Set of Solutions

In [2], it has been proved that for workloads of conjunctive queries each view in
any admissible viewset (and thus in any optimal viewset) can be defined as a
generalization of a subexpression of some query in the workload. The following
lemma, which combines Lemmas 2 and 3 of [2], presents this result formally:

Lemma 1. Let P = (S,Q,D,L) be a conjunctive bag-oriented problem input, V
be any admissible viewset for P, and Q be any query in Q. Suppose that V ′ ⊆ V
is the set of all views used in an equivalent rewriting R of Q in terms of V. Then:

1. The subgoals in the expansion of R corresponding to the definitions of views
V ′ form a partition of the (subgoals in the) definition of Q.

2. Each view in V ′ can be defined as a generalization of a subexpression of Q
which is a member of the partition as defined in (1).

Lemma 1 precisely describes a search space (consisting of all query subexpres-
sions and their generalizations) to look for view definitions. As, in general, this
search space is huge, it is crucial to investigate ways to reduce this search space
(possibly for special cases of the view selection problem) in order to construct
efficient algorithms for solving the view selection problem. A significant improve-
ment in this direction might be to restrict the search space to contain only the
subexpressions of the queries in the query workload (i.e. to exclude the gener-
alizations of the subexpressions). Unfortunately, as it is shown in the following
example, in the general case this is not possible.
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Example 1. Consider a database schema S that contains only the relation e of
arity 4 and a query workload Q = {Q1, Q2} on S, where:

Q1 : q1(X, Y ) :- e(X, X, X, Y ).
Q2 : q2(X, Y ) :- e(X, Y, Y, Y ).

Consider also the following three viewsets V1, V2 and V3:

– V1 = {V11, V12}, where:
V11 : v11(X1, X2) :- e(X1, X1, X1, X2).
V12 : v12(X1, X2) :- e(X1, X2, X2, X2).

– V2 = {V2}, where:
V2 : v2(X1, X2, X3) :- e(X1, X2, X2, X3).

– V3 = {V3}, where:
V3 : v3(X1, X2, X3, X4) :- e(X1, X2, X3, X4).

Notice that the bodies of the view definitions of V1 are subexpressions of the
bodies of the queries in Q (in fact they are obtained from the bodies of Q1 and
Q2 by renaming their variables), while the bodies of the views in V2 and V3 are
generalizations of these subexpressions. Using each one of the above viewsets we
get equivalent rewritings for the queries in Q. More specifically, using V1 we get:

R1 : r1(X, Y ) :- v11(X, Y ).
R2 : r2(X, Y ) :- v12(X, Y ).

where R1 and R2 are equivalent rewritings of Q1 and Q2 respectively. Using V2

we get:
R′

1 : r′1(X, Y ) :- v2(X, X, Y ).
R′

2 : r′2(X, Y ) :- v2(X, Y, Y ).

where R′
1 and R′

2 are equivalent rewritings of Q1 and Q2 respectively. Finally,
using V3 we get:

R′′
1 : r′′1 (X, Y ) :- v3(X, X, X, Y ).

R′′
2 : r′′2 (X, Y ) :- v3(X, Y, Y, Y ).

where R′′
1 and R′′

2 are equivalent rewritings of Q1 and Q2 respectively.
Assuming a database instance D={(e(a, a, a, a);1), (e(a, b, c, d);5)}, the sets

V1(D), V2(D) and V3(D) are:

V1(D) = {(v11(a, a); 1), (v12(a, a); 1)}.
V2(D) = {(v2(a, a, a); 1)}.
V3(D) = {(v3(a, a, a, a); 1), (v3(a, b, c, d); 5)}.

Since size(V3(D))=6, size(V1(D))=2 and size(V2(D))=1, we have size(V3(D))
> size(V1(D)) > size(V2(D)). If we choose a storage limit L = size(V2(D)) = 1,
then V2 is the only admissible viewset among the above three.

Example 1 shows that, in some cases, any optimal solution requires views that
cannot be constructed as subexpressions of the queries in the query workload.
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The optimal solution in Example 1 uses views constructed using generalizations
of subexpressions of the queries. In particular, the view in the optimal viewset
V2 is defined as a common generalization of the bodies of both queries in the
query workload Q. Based on these observations two questions arise:

1. Are there any special cases of the view selection problem for which there
are optimal solutions whose viewset can be constructed by considering only
subexpressions of the queries in the query workload?

2. For the general case, can we reduce the search space specified by Lemma 1
which consists of all possible generalizations of query subexpressions?

Both questions can be answered affirmatively as shown in the following Propo-
sitions 1 and 2.

Proposition 1. Let P = (S,Q,D,L) be a conjunctive bag-oriented view selec-
tion problem input such that every relation in S appears at most once in a body
of some query in Q. If there exists a solution for P, then there exists an optimal
solution Λ = (V ,R) such that each view in V is defined as a subexpression of a
query in Q.

Notice that, when the assumptions of Proposition 1 hold, the queries in the
workload Q do not contain self-joins. In this case, because of Theorem 5 of [2],
we can rewrite each query in Q without using self-joins of views in V .

We now focus on the general case and prove, in Proposition 2, that, in order
to construct an optimal viewset, we need to consider both subexpressions of
queries and lgg’s of subexpressions. We can thus exclude all those generalizations
of subexpressions that are not lgg’s of two or more subexpressions.

Proposition 2. Let P = (S,Q,D,L) be a conjunctive bag-oriented view selec-
tion problem. If there exists a solution for P, then there is an optimal solution
Λ = (V ,R) for P such that the body of each view in V is either a subexpression
of a query in Q or an lgg of two or more subexpressions of queries in Q.

The intuition behind Propositions 1 and 2 is that the use of generalization of
subexpressions in defining a view is useful only when this view definition will
be subsequently used two or more times to construct equivalent rewritings for
the queries in the workload Q. This is the case of the viewsets V2 and V3 in
Example 1. Besides, it is not useful to generalize the subexpression more than
needed as this, in general, increases the number of the tuples obtained when
materializing this “overgeneralized” view definition and this does not contribute
towards an improvement of the evaluation of the rewriting . An example of such
“overgeneralization” is the viewset V3 in Example 1.

We further refine Propositions 1 and 2 by restricting also the vector of vari-
ables in the heads of the view definitions. The simplest choice is to put as ar-
guments of a view head all different variables appearing in the view’s body.
However, this is not always the “best” choice as the following example shows:

Example 2. Consider a query workload Q = {Q}, where:

Q : q1(X, Y ) :- e(X, Z), f(Z, W ), g(W, Y ).



On Solving Efficiently the View Selection Problem under Bag-Semantics 21

Consider also the following viewset V1 = {V11, V12}:

V11 : v11(X, Z, W ) :- e(X, Z), f(Z, W ).
V12 : v12(W, Y ) :- g(W, Y ).

Notice that using V1 as we can get the following equivalent rewriting R of Q:

R : r(X, Y ) :- v11(X, Z, W ), v12(W, Y ).

It is easy to see, however, that the variable Z in the head of V11 is redundant.
More specifically, if we replace the view V11 in V1 by the following view V ′

11:

V ′
11 : v′11(X, W ) :- e(X, Z), f(Z, W ).

we get R′ which is also an equivalent rewriting of Q:

R′ : r′(X, Y ) :- v′11(X, W ), v12(W, Y ).

Comparing V11 and V ′
11, it is easy to see that, under bag semantics, for every

database D we have size(V11(D)) = size(V ′
11(D)). Also, the query R′, obtained

by using V ′
11 to rewrite Q, is computed more efficiently than the rewriting R

obtained by using V11 to rewrite Q.

We now show how to choose the appropriate set of variables to be used as head
arguments of the view definitions.

Definition 4. Let Q be a query of the form H :- B1, . . . , Bn and S =B11, . . . , B1k,
with 1 ≤ k ≤ n, be a subexpression of the body of Q. Let Q′ = Q−S be the query ob-
tained by removing from the body of Q the atoms in S. Then, the set lvars(Q, S) =
V ars(Q′) ∩ V ars(S), is called the linking variables of Q and S.

Example 3. (Continued from Example 2) Consider the query Q in Example 2
and the subexpression S = e(X, Z), f(Z, W ) of Q. It is easy to see that the set
of linking variables of Q and S is lvars(Q, S) = {X, W}.
Proposition 3. Let Q be a conjunctive query and V be a view whose body is
defined as a subexpression of Q. Then the view V can be used in an equivalent
rewriting of Q, if and only if lvars(Q, S) ⊆ vars(head(V )).

The linking variables are related to the shared-variables property introduced by
[17]; that holds in the set-oriented context.

What the above proposition indicates is that the set of linking variables is the
minimum set of variables that should be put in the head of the view definition
so as this view can be used in an equivalent rewriting of the query.

Example 4. (Continued from Example 3) Notice that the variables in {X, W},
which are the linking variables of Q and S, appear in the heads orf both views
V11 and V ′

11 constructed from the subexpression S of Q. Observe that, if we
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remove X or W or both from the head of the view V11 (or the view V ′
11), then

the corresponding viewset cannot give equivalent rewriting for the query Q.

Proposition 3 refers to views which are defined as subexpressions of the queries
in the query workload. We now investigate the problem of selecting the head
arguments of the views defined as least general generalizations of subexpressions
of queries. For this we need the following definition:

Definition 5. Let E = {S1, . . . , Sk}, with k > 1, be a set of expressions, and G
be their least general generalization (supposing that such an lgg exists). Let S be
an expression in E and M be a mapping for the arguments of S to the arguments
of G such that each argument of S in a position (i, j), where i is the order of an
atom in S and j is the order of the argument in the i-th atom of S, maps to the
argument which is in the position (i, j) on G. Let X be a variable in vars(S).
Then the corresponding variable set of X in G is defined as {Y |X appears in a
position (i, j) of S and Y is the variable in the position (i, j) of G}.
Proposition 4 specifies the minimum set of variables that should be put in the
head of a view defined as the lgg of two or more subexpressions.

Proposition 4. Let Q1, . . . , Qk, with k > 1, be (not necessarily different) queries
in a query workload Q, and let S1, . . . , Sk, be expressions such that Si is a subex-
pression of Qi for 1 < i ≤ k. Suppose that the least general generalization of
S1, . . . , Sk exists and that V is a view whose body is the least general generalization
of S1, . . . , Sk. Then the view V can be used in an equivalent rewriting of Qi, for

all i = 1, . . . , k, if and only if
k⋃

i=1

Li ∪
k⋃

i=1

Mi ⊆ vars(head(V )), where (a) Li is

the union of the corresponding variable sets of the variables in lvars(Qi, Si), and
(b) Mi is the union of the corresponding variable sets of the variables in Si whose
corresponding variable sets are not singletons.

Another way to construct the view V whose body is the least general general-
ization of the subexpressions S1 and S2 of two queries Q1 and Q2 respectively
proceeds in two steps as follows:

1. We construct the views V1 and V2 using the subexpressions S1 and S2 respec-
tively as bodies and the linking variables with Q1 and Q2 as head variables.

2. By considering V1 and V2 as queries we construct V with body the lgg of the
bodies of V1 and V2 and with head variables the minimum set of variables
specified by Proposition 4. V is said to be an lgview of the views V1 and V2.

This procedure can be easily generalized for more than two subexpressions.
An interesting question referring to lgviews is the following: “Does the in-

equality size(V ) ≤ size(V1) + size(V2) always hold for the lgview V of two
views V1 and V2?”. Notice that, if the answer is “yes” for any bag-oriented view
selection problem input, then whenever an lgview exists, the original views can
be discarded eliminating in this way the search space for finding viewsets. Un-
fortunately, the inequality does not always hold, as the following example shows.
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Example 5. Let a viewset V = {V1, V2}, where the definitions of the views are:

V1 : v1(X, Z) :- p1(X, X), p2(X, Z).
V2 : v2(X, Z) :- p1(X, Z), p2(Z, Z).

where p1 and p2 are binary relations on the database schema S. Consider also
another viewset W = {W} whose view W is defined as:

W : w(A, B, C) :- p1(A, B), p2(B, C).

Notice that W is the lgview of the views in V . Assuming the database instance:

D = {p1(1, 1), p1(1, 2), p1(3, 4), p2(1, 1), p2(1, 2), p2(2, 2), p2(2, 3), p2(4, 5)},

in which the multiplicity of each database tuple in this example is 1 and for this
we omit it, and materializing the views over this database we get:

V(D) = {v1(1, 1), v1(1, 2), v2(1, 1), v2(1, 2)}.
W(D) = {w(1, 1, 1), w(1, 1, 2), w(1, 2, 2), w(1, 2, 3), w(3, 4, 5)}.

It is easy to see that size(V(D)) < size(W(D)).

The following theorem summarizes the results of this section:

Theorem 1. Let a bag-oriented view selection input P = (S,Q,D,L). If there is
a solution for P, then there exists an optimal solution Λ = (V ,R) such that each
view in V is either a subexpression view or an lgview whose body is constructed
as specified by Proposition 2, and whose head is constructed using the minimal
set of variables specified by Propositions 3 and 4, respectively.

Thus the class of solutions constructed as above is a representative set of solu-
tions for a given bag-oriented view selection problem input P .

4.2 LGG-VSB Algorithm

An algorithm, called LGG-VSB, which is based on the results of the previous
section, and outputs the representative set of optimal solutions, for a given view
selection problem input, is proposed in this section. LGG-VSB incorporates the
results of the Theorem 1 and Lemma 1 to the algorithm CGALG (introduced
in [2]), reducing significantly the search space for finding an optimal solution. In
particular, LGG-VSB avoids the construction of viewsets that do not rewrite the
queries in the workload, by producing the candidate viewsets in such a way that
the construction of the equivalent rewritings of the query is quickly achieved;
i.e. instead of construction of every set of views whose body is a generalization
of a subexpression of a query’s body (CGALG), LGG-VSB constructs viewsets
that form a partition of the body of each query in the workload.
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Algorithm LGG-VSB.
Input: A bag oriented view selection problem input1 P = {S,Q,D,L}.
Output: Λ, the representative set of optimal solutions.

Begin
1. Let V be a set of viewsets constructed as follows: Each V ′ ∈ V is of

the form V ′ = V1 ∪ . . . ∪ Vn, where n is the number of queries in Q
and each viewset Vi is obtained from the query Qi ∈ Q as follows:
- Let Pi be a partition of the subgoals of Qi.
- For each block Bj ∈ Pi, add a view definition Vi,j in Vi whose body

consists of the atoms in Bj and whose head variables are the
variables in lvars(Qi, Bj).

2. Set G0 = V ; set i = 0.
3. while Gi �= ∅ do

- Gi+1 = {Vg|Vg = (V ′ −M) ∪ {Vl}, where V ′ ∈ Gi and M ⊆ V ′

and Vl = lgview(M)}.
- i = i + 1.

end while
4. Let V =

⋃
j=0,...,i Gj .

5. Compute the cost C(Q,D) of Q on D and set it to Copt.
6. For every viewset V ′ ∈ V , such that size(V ′) ≤ L, do

- Construct the set RV′ of all equivalent rewritings of Q using V ′.
- Set Λ = ∅.
- For every distinct subset R of RV′ such that R contains an

equivalent rewriting of each query in Q, do
- Let c = C(R,V ′(D)).
- If c < Copt, then set Copt = c and set Λ = {(V ′,R)}

else if c = Copt, then Λ = Λ ∪ {(V ′,R)}.
end.

5 Chain and Path Queries

In this section, we study the bag-oriented view selection problem when the query
workload is a set of either chain queries or path queries. The main results are as
follows: Subsection 5.1 demonstrates that for a problem input P = (S,Q,D,L),
where Q is a workload of chain queries, we cannot restrict the space of optimal
solutions by searching admissible viewsets which contain only chain-views, i.e.
views defined by chain queries. Subsection 5.2 demonstrates that for a problem
input P = (S,Q,D,L), where Q is a workload of path queries, if there exists
a solution for P , then there is at least one optimal solution for P which is
constructed by an admissible viewset containing only path views (Theorem 2).

5.1 Chain-Query Workload

In this section we study the view selection problem for workloads containing
only chain-queries. In particular, we focus our attention on whether there is an
1 Recall that L = {L}, where L is a single storage limit constraint.
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optimal solution constructed by a set of chain-views. Unfortunately, as the fol-
lowing proposition shows, there are cases in which none of the optimal solutions
is constructed by a set of chain-views.

Proposition 5. There exists at least one bag-oriented view selection problem
input P = (S,Q,D,L) such that:

– Q is a set of chain queries, and
– P has optimal solutions but there is no optimal solution Λ = (V , R) such

that V contains only chain queries.

Proof. The following example proves this proposition.

Example 6. Consider a query workload Q = {Q} on a database schema S that
contains the binary relations r1, r2 and r3, where Q is the following chain query:

Q : q(X, Y ) :- r1(X, Z), r2(Z, W ), r3(W, Y ).

Consider also the following five viewsets Vi, i ∈ {1, 2, 3, 4, 5}:
V1 = {V11, V12}, where:

V11 : v11(X, Z, W, Y ) :- r1(X, Z), r3(W, Y ).
V12 : v12(X, Y ) :- r2(X, Y ).

V2 = {V21, V22}, where:
V21 : v21(X, Y ) :- r1(X, Z), r2(Z, Y ).
V22 : v22(X, Y ) :- r3(X, Y ).

V3 = {V31, V32}, where:
V31 : v31(X, Y ) :- r2(X, Z), r3(Z, Y ).
V32 : v32(X, Y ) :- r1(X, Y ).

V4 = {V41}, where:
V41 : v41(X, Y ) :- r1(X, Z), r2(Z, W ), r3(W, Y ).

V5 = {V51, V52, V53}, where:
V51 : v51(X, Y ) :- r1(X, Y ).
V52 : v52(X, Y ) :- r2(X, Y ).
V53 : v53(X, Y ) :- r3(X, Y ).

Observe that the above viewsets are all possible viewsets constructed as de-
scribed in Section 4.

Suppose that we are given database instance D = {(r1(a,b);5), (r2(b,c);10),
(r3(c,d);5)}. Considering a storage limit L=35 tuples, the following viewsets:

V1(D) = {(v11(a, b, c, d); 25), (v12(b, c); 10)}
V5(D) = {(v51(a, b); 5), (v52(b, c); 10), (v53(c, d); 5)}

do not violate the storage limit constraint. In contrast, the viewsets:

V2(D) = {(v21(a, c); 50), (v22(c, d); 5)}
V3(D) = {(v31(a, c); 50), (v32(c, d); 5)}
V4(D) = {(v41(a, c); 250)}
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do violate it. Thus, Λ = (V1, R) and Λ′ = (V5, R
′) are solutions for input P ,

where the rewritings R and R′ are the following:

R : q(X, Y ) :- v11(X, Z, W, Y ), v12(Z, W ).
R′ : q(X, Y ) :- v51(X, Z), v52(Z, W ), v53(W, Y ).

Using the cost model presented in Section 3, the costs of Λ and Λ′ are
C(R,V1(D)) = 55 and C(R′,V4(D)) = 325 respectively. As a consequence, Λ
is an optimal solution for P .

5.2 Path-Query Workload

In this section we study the view selection problem for path-query workloads (i.e.
workloads of path queries). Unlike to the problem for chain query workloads in
which we cannot reduce the search space to the class of chain views, for path-
query workloads we can reduce the search space even more. The main result of
this section, presented by the following theorem, is that whenever the workload
is a set of path-queries, we can focus on path-viewsets whose views have at most
as many subgoals as the length of the longest path-query in the workload.

Theorem 2. Let P = (S,Q,D,L), be a conjunctive bag-oriented view selection
input, and Q contains a set of path queries. If there exists a solution Λ = (Vo,Ro)
for P, then there is an optimal solution Λ′ = (V ′

o,R′
o) for P such that:

– each view in V ′
o is defined as a path of the same relation as a query Q ∈ Q,

– every view in V ′
o has at most n subgoals, where n is the length of the longest

query in Q,
– every R ∈ R′

o is a chain query.

Consequently, we may restrict our attention in searching optimal solutions con-
structed by path-viewsets. In this case, the number of admissible viewsets is
exponential to the number of subgoals of the path-queries in the workload. This
exponential bound is implied by the reduction of the problem of searching path-
viewsets to the integer-partitioning problem [5].

Based on Theorem 2, we can improve the LGG-VSB for workloads containing
only path-queries.In particular, when we know that the workload Q consists of
n path-queries of the same relation, steps 1-4 of LGG-VSB can be replaced by:

– Each VI ∈ V contains a path-view Vk of length k, for every distinct integer
k ∈ I, where the set of integers I is of the form I = Ik1 ∪ . . .∪Ikn , and Iki is
a partition of the length of path-query Pki ∈ Q, i ∈ {1, . . . n}; the partitions
of an integer can be computed using an algorithm from [26].

6 Conclusion

In this paper we studied the problem of view selection under bag semantics.
In particular, we investigated ways to limit the search space of candidate views,
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given a workload of CQs. We improved previous results by exploiting very refined
characterizations of views that participate in equivalent rewritings. Based on
these characterizations we proposed sound and complete algorithms to select
views for a query workload. Besides, we studied the problem in two special cases,
that is, when the workload contains only (a) chain queries, or (b) path queries,
and present interesting results which further improve the proposed algorithm.
Concerning the experimental evaluation of our approach, we have contacted
preliminary experiments that gave promising results.

There is a lot to be done for future work including the following: (a) studying
further the potential features of lgviews, (b) studying more special cases of the
view selection problem, (c) studying the view selection problem for parameter-
ized queries, and (d) studying the exact complexity of the problem.

Acknowledgements. We would like to thank Timos Sellis and the anonymous
reviewers for their valuable comments.
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