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Abstract. The problem of storing and querying XML data using re-
lational databases has been considered a lot and many techniques have
been developed. MXML is an extension of XML suitable for represent-
ing data that assume different facets, having different value and structure
under different contexts, which are determined by assigning values to a
number of dimensions. In this paper, we explore techniques for storing
MXML documents in relational databases, based on techniques previ-
ously proposed for conventional XML documents. Essential characteris-
tics of the proposed techniques are the capabilities a) to reconstruct the
original MXML document from its relational representation and b) to
express MXML context-aware queries in SQL.

1 Introduction

The problem of storing XML data in relational databases has been intensively
investigated [4,10,11,13] during the past 10 years. The objective is to use an
RDBMS in order to store and query XML data. First, a relational schema is
chosen for storing the XML data, and then XML queries, produced by applica-
tions, are translated to SQL for evaluation. After the execution of SQL queries,
the results are translated back to XML and returned to the application.
Multidimensional XML (MXML) is an extension of XML which allows con-
text specifiers to qualify element and attribute values, and specify the contexts
under which the document components have meaning. MXML is therefore suit-
able for representing data that assume different facets, having different value or
structure, under different contexts. Contexts are specified by giving values to
one or more user defined dimensions. In MXML, dimensions may be applied to
elements and attributes (their values depend on the dimensions). An alterna-
tive solution would be to create a different XML document for every possible
combination, but such an approach involves excessive duplication of information.
In this paper, we present two approaches for storing MXML in relational
databases, based on XML storage approaches. We use MXML-graphs, which
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are graphs using appropriate types of nodes and edges, to represent MXML
documents. In the first (naive) approach, a single relational table is used to store
all information about the nodes and edges of the MXML-graph. Although simple,
this approach presents some drawbacks, like the large number of expensive self-
joins when evaluating queries. In the second approach we use several tables, each
of them storing a different type of nodes of the MXML-graph. In this way the
size of the tables involved in joins is reduced and consequently the efficiency of
query evaluation is enhanced. Both approaches use additional tables to represent
context in a way that it can be used and manipulated by SQL queries.

2 Preliminaries

2.1 Mutidimensional XML

In MXML, data assume different facets, having different value or structure,
under different contexts according to a number of dimensions which may be
applied to elements and attributes [7, 8]. The notion of “world” is fundamental in
MXML. A world represents an environment under which data obtain a meaning.
A world is determined by assigning to every dimension a single value, taken
from the domain of the dimension. In MXML we use syntactic constructs called
context specifiers that specify sets of worlds by imposing constraints on the values
that dimensions can take. The elements/attributes that have different facets
under different contexts are called multidimensional elements/attributes. Each
multidimensional element/attribute contains one or more facets, called context
elements/attributes, accompanied with the corresponding context specifier which
denotes the set of worlds under which this facet is the holding facet of the
element /attribute. The syntax of MXML is shown in Example 1, where a MXML
document containing information about a book is presented.

Ezxzample 1. The MXML document shown below represents a book in a book
store. Two dimensions are used namely edition whose domain is {greek,
english}, and customer_type whose domain is {student, library}.

<book isbn=[edition=english]"0-13-110362-8"[/]
[edition=greek]"0-13-110370-9" [/]1>
<title>The C programming language</title>
<authors>
<author>Brian W. Kernighan</author>
<author>Dennis M. Ritchie</author>
</authors>
<@publisher>
[edition = english] <publisher>Prentice Hall</publisher>[/]
[edition = greek] <publisher>Klidarithmos</publisher>[/]
</@publisher>
<@translator>
[edition = greek] <translator>Thomas Moraitis</translator>[/]
</@translator>
<@price>



[edition=english]<price>15</price>[/]
[edition=greek,customer_type=student]<price>9</price>[/]
[edition=greek,customer_type=libraryl<price>12</price>[/]
</@price>
<Qcover>
[edition=english]<cover><material>leather</material></cover>[/]
[edition=greek]
<cover>
<material>paper</material >
<@picture>
[customer_type=student]<picture>student.bmp</picture>[/]
[customer_type=library]l<picture>library.bmp</picture>[/]
</@picture>
</cover>

[/1
</@cover>
</book>

Notice that multidimensional elements (see for example the element price)
are the elements whose name is preceded by the symbol @ while the corresponding
context elements have the same element name but without the symbol @.

A MXML document can be considered as a compact representation of a set
of (conventional) XML documents, each of them holding under a specific world.
In Subsection 3.3 we will present a process called reduction which extracts XML
documents from a MXML document.

2.2 Storing XML data in relational databases

Many researchers have investigated how an RDBMS can be used to store and
query XML data. Work has also been directed towards the storage of temporal
extensions of XML [15,1,2]. The techniques proposed for XML storage can be
divided in two categories, depending on the presence or absence of a schema:

1. Schema-Based XML Storage techniques: the objective here is to find a re-
lational schema for storing a XML document, guided by the structure of a
schema for that document [9, 13,5, 14,10, 3, 11].

2. Schema-Oblivious XML Storage techniques: the objective is to find a rela-
tional schema for storing XML documents independent of the presence or
absence of a schema [13,5, 14, 16, 10, 6, 4].

The approaches that we propose in this paper do not take schema information
into account, and therefore belong to the Schema-Oblivious category.

3 Properties of MXML documents

3.1 A graphical model for MXML

In this section we present a graphical model for MXML called MXML-graph. The
proposed model is node-based and each node is characterized by a unique “id”.



In MXML-graph, except from a special node called root node, there are the
following node types: multidimensional element nodes, context element nodes,
multidimensional attribute nodes, context attribute nodes, and value nodes. The
context element nodes, context attribute nodes, and value nodes correspond to
the element nodes, attribute nodes and value nodes in a conventional XML
graph. Each multidimensional/context element node is labelled with the corre-
sponding element name, while each multidimensional/context attribute node is
labelled with the corresponding attribute name. As in conventional XML, value
nodes are leaf nodes and carry the corresponding value. The facets (context ele-
ment/attribute nodes) of a multidimensional node are connected to that node by
edges labelled with context specifiers denoting the conditions under which each
facet holds. These edges are called element/attribute context edges respectively.
Context elements/attributes are connected to their child elements/attribute or
value nodes by edges called element/attribute/value edges respectively. Finally,
the context attributes of type IDREF(S) are connected to the element nodes
that they point to by edges called attribute reference edges.

Ezxample 2. In Fig. 1, we see the representation of the MXML document of FEx-
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Fig. 1. Graphical representation of MXML (MXML tree)

ample 1 as a MXML-graph. Note that some additional multidimensional nodes
(e.g. nodes 7 and 10) have been added to ensure that the types of the edges alter-
nate consistently in every path of the graph. This does not affect the information
contained in the document, but facilitates the navigation in the graph and the
formulation of queries. For saving space, in Fig. 1 we use obvious abbreviations
for dimension names and values that appear in the MXML document.



3.2 Properties of contexts

Context specifiers qualifying element/attribute context edges give the explicit
contexts of the nodes to which these edges lead. The explicit context of all the
other nodes of the MXML-graph is considered to be the universal context [ ],
denoting the set of all possible worlds. The explicit context can be considered
as the true context only within the boundaries of a single multidimensional ele-
ment/attribute. When elements and attributes are combined to form a MXML
document, the explicit context of each element/attribute does not alone de-
termine the worlds under which that element/attribute holds, since when an
element/attribute ey is part of another element e;, then e; have substance only
under the worlds that e; has substance. This can be conceived as if the context
under which e; holds is inherited to es. The context propagated in that way is
combined with (constraint by) the explicit context of a node to give the inherited
contezt for that node. Formally, the inherited context ic(q) of a node ¢ is defined
as ic(q) = ic(p) N° ec(q), where ic(p) is the inherited context of its parent node
p. N° is an operator called context intersection defined in [12] which combines
two context specifiers and computes a new context specifier which represents
the intersection of the worlds specified by the original context specifiers. The
evaluation of the inherited context starts from the root of the MXML-graph. By
definition, the inherited context of the root of the graph is the universal context
[]. Note that contexts are not inherited through attribute reference edges.

As in conventional XML, the leaf nodes of MXML-graphs must be value
nodes. The inherited context coverage of a node further constraints its inherited
context, so as to contain only the worlds under which the node has access to
some value node. This property is important for navigation and querying, but
also for the reduction process presented in the next section. The inherited context
coverage icc(n) of a node n is defined as follows: if n is a leaf node then icc(n) =
ic(n); otherwise ice(n) = ice(ng) U ice(ng) UC ... U ice(ng ), where nq, ..., ng are
the child element nodes of n. U is an operator called context union defined in [12]
which combines two context specifiers and computes a new one which represents
the union of the worlds specified by the original context specifiers. The inherited
context coverage gives the true context of a node in a MXML-graph.

3.3 Reduction of MXML to XML

Reduction is a process that given a world w, and a MXML document (MXML-
graph) G, we can obtain a conventional XML document (XML-Graph) G’ which
is the facet of G under w. Reduction is based on the idea that we should eliminate
all subtrees of G for which the world w does not belong to the worlds specified
by the inherited context coverage of their roots. Then, we eliminate each element
context edge (resp. attribute context edge) (p,C,q) of the graph G; obtained
from G in this way, as follows: Let (s,p) be the element edge (resp. attribute
edge) leading to the node p. Then a) add a new element edge (resp. attribute
edge) (s,q), and b) remove the edges (p,C,q) and (s,p) and the node p.

The XML document (XML-graph) G’ obtained in this way is the holding
facet of the MXML document G under the world w.



4 Storing MXML in relational databases

In this section we present two approaches for storing MXML documents using
relational databases.

4.1 Naive Approach

The first approach, called naive approach, uses a single table (Node Table), to
store all information contained in a MXML document. Node Table contains all
the information which is necessary to reconstruct the MXML document(graph).
Each row of the table represents a MXML node. The attributes of Node Table
are: node_id stores the id of the node, parent_id stores the id of the parent node,
ordinal stores a number denoting the order of the node among its siblings, tag
stores the label (tag) of the node or NULL (denoted by “-”) if it is a value node,
value stores the value of the node if it is a value node or NULL otherwise, type
stores a code denoting the node type (CE for context element, CA for context
attribute, ME for multidimensional element, MA for multidimensional attribute,
and VN for value node), and explicit_context stores the explicit context of the
node (as a string). Noted that the explicit context is kept here for completeness,
and does not serve any retrieval purposes. In the following we will see how the
correspondence of nodes to the worlds under which they hold is encoded.

Example 3. Fig. 2 shows how the MXML Graph of Fig. 1 is stored in the Node

Table. Some of the nodes have been omitted, denoted by “...”, for brevity.
Node Table
node_id|parent_id|ordinal| tag value type|explicit_context
1 0 1 book - CE -
2 1 1 isbn - MA -
3 2 1 isbn - CA [ed=en]
4 3 1 - 0-13-110362-8 | VN -
5 2 2 isbn - CA [ed=gr]
6 5 1 - 0-13-110370-9 | VN -
7 1 2 title - ME -
8 7 1| title - CE [
9 8 1 - |The C progr. lang.| VN -
43 42 1 |picture - CE | [c-type=stud]

Fig. 2. Storing the MXML-graph of Fig. 1 in a Node Table.

We now explain how context is stored in such a way so as to facilitate the formu-
lation of context-aware queries. We introduce three additional tables, as shown in
Fig. 3. The Possible Worlds Table which assigns a unique ID (attribute word_id)



to each possible combination of dimension values. Each dimension in the MXML
document has a corresponding attribute in this table. The Fxplicit Context Ta-
ble keeps the correspondence of each node with the worlds represented by its
explicit context. Finally, the Inherited Coverage Table keeps the correspondence
of each node with the worlds represented by its inherited context coverage.

Ezample 4. Fig. 3, depicts (parts of) the Possible Worlds Table, the Explicit
Context Table, and the Inherited Coverage Table obtained by encoding the
context information appearing in the MXML-graph of Fig. 1. For example,

Explicit Context Table
node_id|  world_id Inherited Coverage Table
1 1 node_id world_id
1 2 1 1
Possible Worlds Table 1 3 1 2
world_id |edition|customer_type 1 4 1 3
1 gr stud 1 4
2 gr lib 5 1
3 en stud 5 2 5 1
4 en lib 6 1 5 2
6 2 6 1
6 3 6 2
6 4

Fig. 3. Mapping MXML nodes to worlds.

the inherited context coverage of the node with node_id=6 includes the worlds
{ (edition, greek), (customer_type, student)} and {(edition, greek),
(customer_type, library)}. This is encoded in the Inherited Coverage Table
as two rows with node_id=6 and the world ids 1 and 2. In the Explicit Context
Table the same node corresponds to all possible worlds (ids 1, 2, 3 and 4).

Representing in this way the context information of MXML-graphs facilitates the
construction of SQL queries referring to context. Moreover, it makes possible
the translation of queries expressed in a language called MXPath, which is a
multidimensional extension of XPath, into equivalent SQL queries. Encoding
both the explicit context and the inherited context coverage as above allows
us to construct queries which use both the explicit context and the inherited
context coverage of nodes. As an example consider the following query given in
natural language: Find the ISBN of the greek edition of the book with
title ‘‘The C Programming Language’’. This query is encoded in SQL as:

select N4.value
from Node as N1, Node as N2, Node as N3,..., Node as N7
where N7.type="VN" and N7.value="The C Programming language" and
N7 .parent_id=N6.id and
N6.type="CE" and N6.tag="title" and N6.parent_id=N5.id and



N5.type="ME" and N5.tag="title" and N5.parent_id=N1.id and
N1.type="CE" and N1.tag="book" and N1.id=N2.parent_id and
N2.type="MA" and N2.tag="isbn" and N2.id=N3.parent_id and
N3.type="CA" and N3.tag="isbn" and N3.id=N4.parent_id and
N4.type="VN" and N4.id in (select ICl.node_id

from Inherited_Coverage as IC1, Inherited_Coverage as IC2

where ICl.world_id=1 and IC2.world_id=2 and IC1.node_id=IC2.node_id)

The “where” clause implements the navigation on the tree of Fig. 1, while the
nested query implements the constraints related to context, in order to finally
return node 6 but not node 4. Note that to make the query more readable we have
named the table variables after corresponding node ids, and we have included
in the query some conditions, which are redundant as they are deduced from
the properties of the MXML graph. Observe that, the “greek edition” context
contains both the worlds with ids 1 and 2 according to the Possible Worlds table,
which has not been used in the SQL query for brevity. Finally, notice the large
number of self-joins which is proportional to the depth of the navigation path.

4.2 Limitations of the Naive Approach

The naive approach is straightforward, but it has some drawbacks mainly be-
cause of the use of a single table. As the different types of nodes are stored in
the table, many NULL values appear in the fields explicit_context, tag, and
value. Those NULL values could be avoided if we used different tables for dif-
ferent node types. Moreover, as we showed in Subsection 4.1, queries on MXML
documents involve a large number of self-joins of the Node Table, which is an-
ticipated to be a very long table since it contains the whole tree. Splitting the
Node Table would reduce the size of the tables involved in joins, and enhance
the overall performance of queries. Finally, notice that the context representation
scheme we introduced leads to a number of joins in the nested query. Probably
a better scheme could be introduced that reduces the number of joins.

4.3 A Better Approach

In the Type Approach presented here, MXML nodes are divided into groups ac-
cording to their type. Each group is stored in a separate table named after the
type of the nodes. In particular MFE Table stores multidimensional element nodes,
CE Table stores context element nodes, MA Table stores multidimensional at-
tribute nodes, CA Table stores context attribute nodes, and Value Table stores
value nodes. The schema of these tables is shown in Fig. 4. Each row in these
tables represents a MXML node. The attributes in the tables have the same
meaning as the respective attributes of the Node Table. Using this approach we
tackle some of the problems identified in the previous section. Namely, we elim-
inate NULL values and irrelevant attributes, while at the same time we reduce
the size of the tables involved in joins when navigating the MXML-Graph.

To represent context, we propose a scheme that reduces the size of tables and
the number of joins in context-driven queries. First, we use one table for each



CE Table
ME Table node_id|parent_id|ordinal| tag |explicit_ context
- - - 1 0 1 book -
node_id|parent_id|ordinal| tag 3 - 1 itl
7 1 2 | title e []
10 1 3 |authors 19 18 1  |publisher [ed=en]
21 18 2 |publisher [ed=gr]
MA Table __CA Table _
- - - node_d|parent_id|ordinal| tag |explicit_context
node_id|parent_id|ordinal| tag -
5 I T Tisbn 3 2 1 |isbn [ed=en]
5 2 2 |isbn [ed=gr]
Value Table
node_id|parent_id value
4 3 0-13-110362-8
6 5 0-13-110362-9
9 8 The C programming language
Fig. 4. The Type tables.
Inherited Coverage Table EXph?lt Context .Table
- - node_id| world._id
node_id world-id
— 1 0.0
edition | |customer_type 1 0.0
- - 2 0.0
id|value| [id| value 2 0.0 3 10
o * 0 * 3 1.0 ’
1| en 1 stud 4 1.0
2| gr 2 lib 5 2.0 31 2.2
6 2.0 43 0.1

Fig. 5. Dimension Tables.

dimension (in our example edition and customer_type) to assign an id (id
column) to each possible value (value column). Additionally, id “0” represents
all possible values of the dimension (for id = 0 we use the value “*”). Then,
we assume a fixed order of the dimension names, which will eventually be taken
into account in the formulation of queries. Finally, in the Inherited Coverage and
Explicit Context tables we use world ids of the form “a;.as...a,”, where a1, ao,

.., Gy, are ids of dimension values (Fig. 5). For example, the inherited context
coverage of the node with id 6 in Fig. 1 is encoded as “2.0” in Fig. 5.

5 Discussion and motivation for future work

Two techniques to store MXML documents in relational databases are presented
in this paper. The first one is straightforward and uses a single table to store



MXML. The second divides MXML information according to node types in the
MXML-graph and, although it is more complex than the first one, it performs
better during querying. We are currently working on an extension of XPath
for MXML and its translation to SQL. Our plans for future work include the
investigation of techniques to update MXML data stored in relational databases.
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