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Abstract. The problem of rewriting queries using views has received
significant attention because of its applications in a wide variety of data-
management problems. For select-project-join SQL (a.k.a. conjunctive)
queries and views, there are efficient algorithms in the literature, which
find equivalent and maximally contained rewritings. In the presence of
arithmetic comparisons (ACs) the problem becomes more complex. We
do not know how to find maximally contained rewritings in the general
case. There are algorithms which find maximally contained rewritings
only for special cases such as when ACs are restricted to be semi-interval.
However, we know that the problem of finding an equivalent rewriting
(if there exists one) in the presence of ACs is decidable, yet still doubly
exponential. This complexity calls for an efficient algorithm which will
perform better on average than the complete enumeration algorithm. In
this work we present such an algorithm which is sound and complete. Its
efficiency lies in that it considers fewer candidate rewritings because it in-
cludes a preliminary test to decide for each view whether it is potentially
useful in some rewriting.

1 Introduction

The problem of answering queries using views (i.e. rewriting queries using views)
is as follows. Suppose we are given a query Q over a database schema, and a
set of view definitions V1, V2, . . . , Vk over the same schema. We want to know
whether and how we can answer the query Q using only the answers to the views
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V1, V2, . . . , Vk. The problem has recently received significant attention because
of its applications in a wide variety of data management problems, query op-
timization, maintenance of physical data independence, data integration, data
warehousing, global information systems and mobile computing.

When answering queries using views we often need either find equivalent
rewritings for a query or maximally contained rewriting (MCR). In data in-
tegration, where views describe a set of autonomous heterogenous data sources,
we search for a maximally-contained rewriting, which provides the best answer,
given the available sources. In query optimization or maintenance of physical
data independence we search for a solution that uses the views and is equivalent
(instead of contained) to the original query. When the query and views are con-
junctive (i.e., select-project-join) without comparison predicates, the maximally-
contained rewriting is a union of conjunctive queries over the views [2].

The original definition of conjunctive queries does not allow for comparisons
between data values. However, in practice users often ask select-project-join
queries that do involve comparisons in the selection condition (e.g. price ≤ 100).
For this reason, we extend the class of conjunctive queries by allowing built-in
predicates which are arithmetic comparisons (ACs). So the problem of answering
queries using views in the presence of arithmetic comparisons becomes more
important, yet more complex. The following example illustrates this complexity.

Example 1. Consider the following query Q and set of views V1, V2:

Q : q(X,X) :- a(X,X), b(X),X < 7
V1 : v1(T,U) :- a(S, T ), b(U), T ≤ S, S ≤ U
V2 : v2(T,U) :- a(S, T ), b(U), T ≤ S, S < U

The query Q′ : q(A,A) :- v1(A,A), A < 7 is an equivalent rewriting of Q using
V1. To see why, suppose we expand Q′ by replacing the view subgoal v1(A,A)
by its definition. We get the expansion Q′exp : q(A,A) :- a(S,A), b(A), A ≤
S, S ≤ A,A < 7. By equating S and A we see that the expansion is equivalent
to Q. Notice that the definitions of the views V1, V2 differ only on their second
inequalities. However V2 can not be used to answer Q. Thus, it is the comparison
predicate that affects the existence of the rewriting.

Equivalent and contained rewritings use the containment test. Several algo-
rithms have been proposed for testing containment in the presence of arithmetic
comparisons [12, 10, 25, 4]. Some of these algorithms [10, 25] first normalize the
queries by replacing constants and shared variables, each with new unique vari-
ables, and add arithmetic comparisons to equate those new variables to the
original constants or shared variables. The containment is tested by checking a
logical implication using multiple containment mappings. Another containment
test existing in the literature is based on canonical databases [17, 12].

The problem of finding an equivalent rewriting (if there exists one) in the
general case of ACs is decidable, yet still doubly exponential [3]. This complexity
calls for an efficient algorithm which will perform better on average than the
complete enumeration algorithm.
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In this work we present an algorithm that, given a query and a set of views
which are conjunctive queries with arithmetic comparisons, finds an equivalent
rewriting if there exists one. The algorithm is sound and complete. Its efficiency
lies in that it considers fewer candidate rewritings because it includes a pre-
liminary test to decide for each view whether it is potentially useful in some
rewriting. One of the challenges of our work consists in finding the relationship
between the two problems; a) finding equivalent rewritings in the case of conjunc-
tive queries with arithmetic comparisons and b) finding equivalent rewritings in
the case of simple conjunctive queries. Such relation would allow us to leverage
on existing algorithms for the latter problem. However this is not easy as we
explain in detail in Subsection 3.1.

Another challenge comes from the following observation. In the case of con-
junctive queries, if an equivalent rewriting exists in the language of union of
conjunctive queries, then there exists one which is a single conjunctive query.
However, in the case of conjunctive queries with arithmetic comparisons this prop-
erty does not hold. Indeed even for very simple cases of conjunctive queries and
views with arithmetic comparisons, it is often not possible to find equivalent
rewritings in the form of a single conjunctive query with arithmetic comparisons.
Instead, it is possible to find equivalent rewritings in the form of unions of con-
junctive queries with arithmetic comparisons, as the following example illustrates.

Example 2. Consider the following query Q and set of views V1, V2:

Q : q() :- p(X),X ≥ 0
V1 : v1() :- p(X),X = 0
V2 : v2() :- p(X),X > 0

It is easy to see that there is no conjunctive query which is an equivalent
rewriting of Q using V1, V2. Instead, the following union of conjunctive queries
is an equivalent rewriting:

r0() :- v1()
r0() :- v2()

1.1 Related Work

The problem of answering queries using views is closely related to the problem
of testing for query containment. Chandra and Merlin [6] have shown that the
problems of containment, minimization, and equivalence of conjunctive queries
are NP-complete. Klug in [12] showed that the containment problem for the class
of conjunctive queries with arithmetic comparisons is in ΠP

2 which is the second
level of the polynomial hierarchy introduced by Stockmeyer [23]. In the same
work was also proved that when only left (or right) semi-interval comparisons
are used, the containment problem is shown to be in NP. In a more recent
work Afrati et al. [4] showed more classes of conjunctive queries with arithmetic
comparisons for which the problem of query containment is in NP. Van der
Meyden in [24] proved Klug’s conjecture that containment for conjunctive queries
with inequality arithmetic comparisons is ΠP

2 -complete. He also pointed out
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that the containment problem for conjunctive queries with inequalities (�=) is
also ΠP

2 -complete. The work in [13] studies the computational complexity of the
query containment problem of queries with inequality (�=). In fact, Kolaitis et
al. proved that the complexity for the containment problem for safe conjunctive
queries with inequalities ranges between coNP and ΠP

2 -completeness depending
on how many times each database predicate occurs in the body of the contained
query. They also showed that when one of the two queries is fixed the problem
can be DB-complete, where DB is the class of all decision problems that are the
conjunction of a problem in NP and a problem in coNP.

The problem of finding whether there exists an equivalent rewriting for a query
using views was studied in [14]. An efficient algorithm for finding equivalent
rewritings with the smallest number of subgoals is given in [5]. The work in
[16] considers the problem of answering conjunctive queries using infinite sets of
views and they extend their results to cases when the query and the views use
the built-in predicates <,≤,= and �=.

The work in [1] shows how to find a Datalog maximally-contained rewriting
(MCR) for a special case of Datalog queries and views that are unions of con-
junctive queries. Several algorithms have been developed for finding rewritings
of queries using views. The bucket algorithm [9, 15], the inverse-rule algorithm
[8, 21, 1], the MiniCon algorithm [20], and the Shared-Variable-Bucket algorithm
[18] are some of them (see [11] for a survey.) These algorithms aim at generating
contained rewritings for a query that compute a subset of the answer to the
query, and take the open-world assumption.

Afrati et al. in [2, 3] study the problem of query rewriting in the presence of
arithmetic comparisons. They show that it is decidable to tell whether there ex-
ists an equivalent rewriting which is the union of conjunctive queries with arith-
metic comparisons. They also investigate the existence of maximally contained
rewritings in the presence of arithmetic comparisons and prove that for a special
case of semi-interval comparisons there is a maximally contained rewriting.

2 Preliminaries

In this section we review the problem of query rewriting using views and summa-
rize results in the literature on conjunctive queries with arithmetic comparisons.
In the remainder of the paper we shall use names beginning with lower-case
letters for constants and relations, and names beginning with upper-case letters
for variables. We use V, V1, . . . , Vm to denote views that are defined by conjunc-
tive queries on the base relations. Moreover, for the sake of simplicity, we use
“CQ” to represent “conjunctive query”, “AC” for “arithmetic comparison”, and
“CQAC” for “conjunctive query with arithmetic comparisons”.

2.1 Answering Queries Using Views

We start by reviewing the problem of answering queries using views for conjunc-
tive queries (i.e., select-project-join queries). A conjunctive query CQ is a query
of the form: h(X) :- e1(X1), . . . , ek(Xk), where the head h(X) represents the
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results of the query, and e1 . . . ek are database relations. Each atom in the body
of a conjunctive query is said to be a subgoal. Every argument in the subgoal
is either a variable or a constant. The variables in X are called head or distin-
guished variables, while the variables in Xi are called body variables of the query.
A conjunctive query is said to be safe if all its distinguished variables also occur
in its body. A query Q1 is contained in a query Q2, denoted Q1 � Q2, if for any
database D of the base relations, the answer computed by Q1 is a subset of the
answer computed by Q2, i.e., Q1(D) ⊆ Q2(D). The two queries are equivalent,
denoted Q1 ≡ Q2, if Q1 � Q2 and Q2 � Q1.

Chandra and Merlin [6] show that a conjunctive query Q1 is contained in
another conjunctive query Q2 if and only if there is a containment mapping
from Q2 to Q1. The containment mapping maps the head and all the subgoals
in Q2 to Q1. It maps each variable to either a variable or a constant, and maps
each constant to the same constant. Concerning unions of CQs, the following
containment test is from [22]; a union of CQs P1 ∪ . . . ∪ Pk, is contained in a
union of CQs Q1 ∪ . . . ∪ Qn, denoted P1 ∪ . . . ∪ Pk � Q1 ∪ . . . ∪ Qn, iff for all Pi

there exists some Qj such that Pi � Qj .
Let Q be a query defined on a database schema S, V be a set of views defined

on S, and D be a database with the schema S. A query R is a rewriting of
the query Q using the views in V if the subgoals of R are only view predicates
defined in V or interpreted predicates. The expansion of a query P on a set of
views V , denoted by P exp, is obtained from P by replacing all the views in P
with their corresponding base relations. Note that in the case of union of CQs
the following holds: if R = ∪Ri, then Rexp ≡ ∪(Rexp

i ).
Given a query Q and a view set V , a query P is a contained rewriting of query

Q using V if P uses only the views in V , and P exp � Q. That is, P computes
a partial answer to the query. Given a rewriting language L (e.g., unions of
conjunctive queries), we call P an equivalent rewriting of Q using V w.r.t. L if
P is in L, and P exp ≡ Q. We call P a maximally-contained rewriting (MCR)
of Q w.r.t. L if (1) P is a contained rewriting (in L) of Q, and (2) there is no
contained rewriting P1 (in L) of Q such that P1 properly contains P .

2.2 Conjunctive Queries with Arithmetic Comparisons

In this work we study the problem of rewriting a query using views when both the
query and the views are of the following form:

h(X) :- e1(X1), . . . , ek(Xk), C1, . . . , Cm

where each Ci is an arithmetic comparison in the form A1θA2, where A1 and A2
are variables or constants. The operator θ is one of the following: <, ≤, =, >, or ≥.
We call an arithmetic comparison open if its operator is < or > and closed if its
operator is ≤ or ≥. We call the ei’s ordinary subgoals, and the Ci’s arithmetic
comparison subgoals (AC subgoals). In addition, the following assumptions must
hold:

1) Values for the arguments in the arithmetic comparisons are chosen from an
infinite, totally densely ordered set, such as the rationals or reals.
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2) The arithmetic comparisons are not contradictory; that is, there exists an
instantiation of the variables such that all the arithmetic comparisons are true.

3) All the comparisons are safe, i.e., each variable in the comparisons also
appears in some ordinary subgoal.

2.3 Testing Containment of CQACs

When the queries and views are expressed as conjunctive queries (without arith-
metic comparisons), we know how to find equivalent rewritings (if they exist) and
maximally-contained rewritings (MCRs) that are unions of conjunctive queries
(see [11] for a survey). However, arithmetic comparisons introduce many com-
plications to the problem. In particular, both the containment mapping theorem
[6] and the theorem for unions of CQs [22] no longer hold.

Let Q1 and Q2 be two conjunctive queries with arithmetic comparisons
(CQACs). To test whether Q2 � Q1 there are two most popular methods: a)
the test of canonical databases [17, 12] and b) the test of Gupta and Zhang-
Ozsoyoglu [10, 25]. In the following paragraphs we shortly review the first test,
which we use extensively throughout the paper. Due to space limit, we refer the
reader to [4] for more details about the second test. Before presenting the test,
we briefly explain how to obtain a canonical database D given a query Q: we
turn each ordinary subgoal into a fact by replacing each variable in the body by
a distinct constant, and treating the resulting subgoals as the only tuples in D.

We now describe the test of canonical databases [17, 12]. When dealing with
CQACs we must consider the set of values in the database as belonging to a
totally ordered set, e.g. the rationals or reals. This test produces an exponential
number of canonical databases any one of which could be a counterexample to
the containment. Suppose we want to test Q1 � Q2. We do the following:

1) Consider all partitions of the variables of Q1. For each partition P consider
all possible total orders of the members of the partition and assign to each
member bi of P a unique positive integer ni such that if bk, bl ∈ P and bk < bl,
then nk < nl. Then, substitute (freeze) every variable in each member bi of P by
the corresponding constant ni. Thus we obtain a number of canonical databases
D1,D2, . . . , Dn, one database for each different order in each partition. Each Di

consists of the frozen subgoals of Q1 excluding the subgoals having comparison
predicates.

2) Test whether for all Di that make the body of Q1 true, Q2(Di) includes
the frozen head of Q1. The frozen head of Q1 is obtained by making the same
substitution of constants for variables that yielded Di.

3) Q1 � Q2 if and only if (2) holds.

2.4 Known Decidability Results

The following two theorems from [2] prove the decidability of the problem we
study in this work.

Theorem 1. (CQAC equivalent rewritings) For a query and views that are con-
junctive queries with arithmetic comparisons, it is decidable whether there is an
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equivalent rewriting for the query using the views, where the rewriting is also a
conjunctive query with arithmetic comparisons. If such an equivalent rewriting
exists, there is an algorithm to find it.

Theorem 2. (Union of CQAC equivalent rewritings) For a query and views
that are conjunctive queries with arithmetic comparisons, it is decidable whether
there is an equivalent rewriting for the query using the views, where the rewriting
is a finite union of conjunctive queries with comparisons. If such an equivalent
rewriting exists, there is an algorithm to find it.

2.5 Technical Details

This subsection contains some technical points that are needed to understand
the details of our algorithm. Let D be the canonical database of the query Q
when ignoring the ACs and let V (D) be the result of applying the view defini-
tions V on database D. For each tuple in V (D), we “unfreeze” each introduced
constant back to the original variable of Q, and obtain a set of view tuples
T (V ).

A head homomorphism [20] of the head variables in a view is a partitioning
of these variables, such that all the variables in each member of the partition are
equated to a single variable. For a specific view, different head homomorphisms
result in different view tuples.

Now we consider containment mappings from the ordinary subgoals of the
query to the ordinary subgoals of the view. Let µ be one such mapping from
some query subgoals to view subgoals. The definition of the shared variable
property for µ is the following: whenever a query variable X is mapped on a
nondistinguished view variable, then all query subgoals that contain X are in
the domain of the mapping.

Definition 1. We assume that the sets of variables in the query and the view
definitions are disjoint. An MCD mapping (MiniCon Description [20]) µ is an
one-to-one1 containment mapping from the ordinary subgoals of the query to the
ordinary subgoals of view V which satisfies the shared variable property. Let S
be the set of query variables that are mapped to head variables of view V un-
der µ. We rename each variable X in µ(S) to µ−1(X). Let v be the head of
view V after this renaming. Then, we say that µ is an MCD mapping for view
tuple v.

Intuitively, an MCD mapping represents a fragment of a containment mapping
from the query to the expansion of the rewriting. The way in which MCDs are
constructed guarantees that these fragments can be combined seamlessly.

Definition 2. Let υi and υj be view tuples of V such that there is a containment
mapping from υi to υj. We say that υi is a more relaxed form of υj.
1 This is the only difference with the algorithm in [20]. Here we consider one-to-one

mappings because we are searching for equivalent rewritings whereas in [20] they are
searching for MCR’s.
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Definition 3. We call a nondistinguished variable X in a view V exportable if
there is a head homomorphism h for V , such that the inequalities in h(V ) imply
that X is equal to a distinguished variable in V .

To find exportable nondistinguished variables in a view V , we use the ACs in
V to construct its inequality graph [12], denoted by G(V ). That is, for each
variable or constant A in ACs we create a node in the graph labelled with A.
Then, for every comparison predicate AθB where θ is < or ≤, we introduce
an edge labeled θ from A to B. If there is a path from node A to C, we have
A ≤ C. If there is a <-labeled edge on any path between A and C, then A < C.
We need the following concepts to show how to export a nondistinguished view
variable.

Definition 4. Let X be a nondistinguished variable in a view V . The leq-set
(less-than-or-equal-to set) of X, denoted by S≤(V,X), includes all distinguished
variables Y of V that satisfy the following conditions. There exists a path from
Y to X in the inequality graph G(V ), and all edges on all paths from Y to X are
labeled ≤. In addition, in all paths from Y to X, there is no other distinguished
variable except Y .

Correspondingly, we define the geq-set (greater-than-or-equal-to set) of a variable
X, denoted by S≥(V,X). The following lemma from [2] can help us decide if a
variable in a view V is exportable.

Lemma 1. A nondistinguished variable X in view V is exportable if and only
if both S≤(V,X) and S≥(V,X) are nonempty.

3 Finding Equivalent Rewritings of CQAC Queries Using
CQAC Views

In the following paragraphs we present an algorithm that finds an equivalent
rewriting (if there exists one) for queries that are CQAC using views that are
also CQAC. Our algorithm consists of two phases. In the first phase we find all
candidate rewritings that contain the query, while in the second phase we add
constraints to the rewritings (obtained in the first phase) and we check whether
these rewritings are contained in the query.

The efficiency of our algorithm is mainly based on the observations that if
there exists an equivalent rewriting then there exists one which uses view sub-
goals out of a restricted search space of potentially useful view subgoals. These
useful view subgoals are found by using techniques for finding rewritings of
queries and views without arithmetic comparisons. In more detail, we use chase-
like techniques [7, 19, 5] to find candidate useful subgoals and then we prune
the space even further by using techniques used in finding maximally contained
rewritings [20].

The main challenge of our algorithm however comes from the presence of
arithmetic comparisons and the complications in testing query containment in
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this case. Due to these complications, existing algorithms cannot be used without
modification as the discussion in the next subsection shows.

3.1 Technical Challenges

In the first phase of our algorithm we find rewritings using the views V that
contain the query Q. We begin by considering query Q′ and view V ′ which
result from Q and V after dropping the ACs. Then, we find maximally con-
tained rewritings of Q′ using V ′ and we ensure that these are also equivalent
rewritings of Q′ using V ′ by deleting the view tuples that are not more relaxed.
In particular, we use the algorithm proposed in [20] adjusted to our setting
as described in Subsection 3.2. Other known algorithms which compute either
equivalent rewritings or maximally contained rewritings might also be used. In
any case it is not straightforward how they can be useful. The reason is that
these algorithms focus on rewritings which do not use redundant view subgoals
or that are containment minimal [5]. The following two examples illustrate this
point.

Example 3. Consider query Q and set of views V = {V1, V2, V3}:

Q : q() :- a(X1,X2), a(X2,X3), a(X3,X4), a(X4,X5), a(X5,X6), a(X6,X7),
a(X7,X1), X2 > 5, X7 < 8

V1 : v1(X1,X4) :- a(X1,X2), a(X2,X3), a(X3,X4), a(X4,X5), a(X5,X6),
a(X6,X7), a(X7,X1),X3 > 5

V2 : v2(X3,X5) :- a(X1,X2), a(X2,X3), a(X3,X4), a(X4,X5), a(X5,X6),
a(X6,X7), a(X7,X1),X4 < 8

V3 : v3(X,Y ) :- a(X,X2), a(X2, Y )

Note that Q evaluates to true whenever there exists a closed path of length
7 in the database D such that the conditions shown in Figure 1(a) hold for that
path. We consider also the query Q′ which is defined as Q with the ACs dropped
and the views V ′

1 , V ′
2 , and V ′

3 (with predicates v′
1, v′

2 and v′
3 respectively) which

are the views Vi without the ACs in their definition. For this last query Q′ the
CoreCover algorithm [5] will find an equivalent rewriting R′ where:

R′ : r() :- v′
1(X,Y )

However, if we use this rewriting and simply add ACs, we will not find an
equivalent rewriting of the original query Q using views Vi. Note that such an
equivalent rewriting R does exist and is the following:

R : r() :- v1(X,Y ), v2(Z,X), v3(Y,Z)

This comes easily from Figure 1(b) which shows the two heptagons correspond-
ing to the (expansions of the) atoms v1(X,Y ) and v2(Z,X) with a common
vertex labelled X. Notice also the path formed by the arcs Y → X ′′

2 and
X ′′

2 → Z corresponding to the (expansion of the) atom v3(Y,Z). Thus the Fig-
ure 1(b) represents the expansion of R. It is easy to see that Q � R since
whenever Q evaluates to true then so does R (we can check it by consider-
ing twice the heptagon corresponding to instance of the body of Q). To check
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q()

X1

X6

X5
X4

X3

X2>5X7<8

X1 '

X6 '

X7'

X4'<8

X2'

Z

v2(Z,X)

X

X6

X7

X5
Y

X2

X3>5

v1(X,Y) X2''

(A) (B)

Fig. 1. Example 3

that R � Q notice that the heptagon with vertices Z,X ′
4,X,X2,X3, Y,X ′′

2
which is formed by the expansion of R satisfies the properties required by
the query Q. It is not straightforward that the heptagon fulfills the conditions
of Q.

The rewriting:R′′ : r() :- v′
1(X,Y ), v′

2(Z,X), v′
3(Y,Z) is an equivalent rewrit-

ing of Q′ using V ′ and in fact it is the rewriting that our algorithm needs to
use in order to find an equivalent rewriting of the given CQAC Q using the
views V . However, this rewriting would not have been computed by the existing
algorithms since it contains the redundant subgoals v′

2(Z,X) and v′
3(Y,Z).

Example 4. Suppose we are given the following query and set of views:

Q : q(X,Y ) : − a(X,Z1), a(Z1, 2), b(2, Z2), b(Z2, Y ), Z1 < 5, Z2 > 8
V1 : v1(X,Y ) : − a(X,Z1), a(Z1, 2), b(2, Z2), b(Z2, Y ), Z1 < 5
V2 : v2(X,Y ) : − a(X,Z1), a(Z1, 2), b(2, Z2), b(Z2, Y ), Z2 > 8

Note that an equivalent rewriting is

R : r(X,Y ) :- v1(X,Y ′), v2(X ′, Y )

We consider the query Q′ which is defined as query Q with the ACs dropped
and the views V ′

1 and V ′
2 which are the two views again without the ACs in their

definition. In this case the rewriting of Q′ using V ′ does not contain redundant
subgoals. Still, it is not a containment minimal rewriting [5], i.e. there is another
equivalent rewriting of Q′ using V ′ which is the following:

R′ : r(X,Y ) :- v1(X,Y ).

However we cannot obtain from R′ an equivalent rewriting of Q using V . There-
fore we cannot use the algorithm in [5].
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3.2 Phase 1: Construct Rewritings that Contain the Query

In Phase 1 we begin by creating all canonical databases of the query. For this we
consider all total orders of the variables of the query and the constants of both
the query and the views. Thus we obtain a number of canonical databases. Notice
that the number of canonical databases is exponential in the number of variables.
From these canonical databases we keep only those that compute the head of
the query, or if the query is boolean, that make the body of the query true.
Suppose D1,D2, . . . , Dk are these canonical databases. For every Di, i = 1, . . . , k
we compute the view tuples Ti(V ) by applying the view definitions V on Di and
restoring back the variables in the tuples. Note that the total order of each
canonical database must satisfy the ACs of views; otherwise we omit the view
tuples corresponding to the specific canonical database and view definition.

Example 5. Suppose we are given the following query Q and the view V :

Q : q(A) :- r(A), s(A,A), A ≤ 8
V : v(Y,Z) :- r(X), s(Y,Z), Y ≤ X,X ≤ Z

(Note that P : p(A) :- v(A,A), A ≤ 8 is an equivalent rewriting of Q).
To compute the sets of view tuples we first construct the canonical databases of
Q by considering all variables of Q and all constants of both query and views:

D1 = {r(a), s(a, a)} : a < 8
D2 = {r(a), s(a, a)} : a = 8
D3 = {r(a), s(a, a)} : a > 8

From these canonical databases we keep only D1, D2 as they compute (taking
also into account the comparison predicates) the head of the query. To compute
the view tuples corresponding to D1 we apply the view definitions to D1. We
get V (D1) = {v(a, a)}. Then, by restoring the constant a back to the variable
A we get the set of view tuples T1(V ) = {v(A,A)}. Similarly, for the canonical
database D2, we get T2(V ) = {v(A,A)}.

Having computed Ti(V ) we proceed as follows. Let Q0 be the query obtained
by deleting the comparisons from Q, and let V0 be the view obtained by deleting
the comparisons from V and exporting in the head of the view definition the ex-
portable variables (Subsection 2.5, or see [4] for more details). Due to the different
ways of exporting variables, it is possible that to one view in V may correspond
more than one view in V0. The following example illustrates this point.

Example 6. Suppose we are given the following view definition:

V : v(X,Y,W ) :- a(X,Z1), a(Z1, Z2), b(Z2, Y,W ),X ≤ Z1,W ≤ Z1, Z1 ≤ Y .

By equating variable X to variable Y we obtain the view tuple v1 and by equat-
ing variable Y to variable W we obtain the view tuple v2. In both cases we export
variable Z1, in v1 by equating Z1 to X and in v2 by equating Z1 to Y . That is:

V1 : v1(X,X,W ) :- a(X,X), a(X,Z2), b(Z2,X,W )
V2 : v2(X,Y, Y ) :- a(X,Y ), a(Y,Z2), b(Z2, Y, Y )
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We continue with an overview of the algorithm presented by Pottinger and Levy
in [20] in order to make clear the contribution of our work. The algorithm in [20]
consists of two phases. The first phase computes MCDs and populates the buckets
accordingly. In the second phase the algorithm combines the content of the buckets
to create MCRs. Our algorithm starts as the first phase of [20] but after this we do
not proceed directly to the second phase. First, we delete those view tuples in the
buckets that are not more relaxed forms of view tuples in Ti(V ). Then, we proceed
to the second phase of [20] but only to get an answer to whether there exists an
MCR. If it does not exist, our algorithm stops. If it does exist, then we output a
rewriting PRi consisting of a conjunctive query with subgoals the content of all
buckets. So to every canonical database corresponds only one rewriting.

The above procedure is repeated for every canonical database. If there exists
a canonical database Di for which there is no maximally contained rewriting,
then the algorithm stops and there is no equivalent rewriting of the query. If
there is at least one maximally contained rewriting, then the output of the first
phase of our algorithm is a set of Pre-Rewritings (denoted PR1, PR2, . . . , PRk),
one for each canonical database. Figure 2 summarizes the steps of the first phase
of our algorithm.

Example 7. (Continued from Example 5) There are two Pre-Rewritings PR1,
PR2 corresponding to the two canonical databases D1, D2:

PR1(A) : −v(A,A)
PR2(A) : −v(A,A)

Procedure Pre-Rewritings:
Input: A CQAC Q and a set V of CQAC views.
Output: A set of Pre-Rewritings PR1, PR2, ..., PRk together with the corresponding
canonical databases D1, D2, ..., Dk.
Method:
(1) Construct all canonical databases for Q by taking into account the variables of Q
and all constants of the query and views. Construct also query Q0 which is Q with the
ACs dropped, and a set V0 of CQ views which is V with the ACs dropped.
(2) Keep only those canonical databases which compute the head of Q.
(3) For every canonical database Di do:
1. Compute the view tuples Ti(V ) by applying the view definitions V on Di.
2. If for a canonical database Di it holds Tk(Dk) = ∅ then stop (as there is no

rewriting).
3. Run the first phase of [20] with respect to Q0 and V0 which populates the buckets.
4. Delete from the buckets those tuples that are not more relaxed forms of view tuples

in the Ti(V ).
5. Run the second phase of [20]. If it produces an MCR continue, otherwise stop.
6. Produce a Pre-Rewriting whose subgoals are all view tuples contained in the buck-

ets.
7. Output the Pre-Rewriting together with the corresponding canonical database.

Fig. 2. Phase 1 of our algorithm
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In Proposition 1 we prove that each canonical database Di of the query must
correspond to one CQAC P exp

j of P which computes the query head on this
canonical database.

Proposition 1. Let Q be a CQAC query. If there exists a union of CQAC
P = ∪Pi which is an equivalent rewriting of Q, then for every canonical database
Di of Q, there exists a Pj such that P exp

j computes the head of Q in Di.

Proof. (sketch) The reason is that for every canonical database Di of the query,
P exp must compute the head of the query on this canonical database. Therefore,
there must exist a Pj such that P exp

j computes the head of the query.

The view subgoals in the body of Pj (the corresponding CQAC of canonical
database Di) as a consequence of Proposition 1 are necessarily more relaxed
forms of view tuples in Ti(V ). Therefore, it suffices to restrict our search to view
tuples in more relaxed forms than tuples in Ti(V ). Proposition 2 shows that by
restricting ourselves to view tuples, that we compute in Phase 1, we do not lose
solutions.

Proposition 2. Let Q be a CQAC query. Suppose there is an equivalent rewrit-
ing P of Q in the language of unions of CQACs using a set of CQAC views V .
Then, there is a P ′ = ∪P ′

i which is an equivalent rewriting of Q using views
V with the following property. There exists a canonical database D on which Q
computes the head tuple such that any view (hence ordinary) subgoal of P ′

i maps
on a view tuple in D.

Proposition 3 shows that by restricting ourselves to view tuples in their more
relaxed form that are part of an MCR CQAC we do not lose solutions.

Proposition 3. Let Q be a CQAC query. Suppose there is an equivalent rewrit-
ing P of Q in the language of union of CQACs using a set of CQAC views V .
Then there is a P ′ which is an equivalent rewriting of Q using views V with the
following property. Let P ′

i be a CQAC in P ′. Let P ′
i = P ′

i,0 + βi. Then P ′
i,0 is a

CQ in the MCR of Q0 using V0 possibly with redundant subgoals.

Propositions 2 and 3 are partial results of the completeness of our algorithm and
Lemma 2 is a partial result of soundness so far.

Lemma 2. Let Q be a CQAC query and V a set of CQAC views. Let Di, with
i = 1, . . . , k, be the canonical databases and PRi, with i = 1, . . . , k, the corre-
sponding Pre-Rewritings obtained by procedure of Figure 2. Let PRexp,V

i be the
expansion of PRi wrt V . Then Q � ∪PRexp,V

i .

Proof. The proof of the lemma follows from the containment test for CQACs.

3.3 Phase 2: Construct Rewritings that Are Contained in the
Query

The second phase performs two tasks: a) it constructs the candidate rewritings
by adding constraints to the Pre-Rewritings PRi obtained in Phase 1, still pre-
serving that the union of the new Pre-Rewritings still contains the query, b) it
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checks that the candidate rewritings are also contained in the query. In task a)
to every PRi we add the constraints of the canonical database of Q to which
this Pre-Rewriting corresponds. We call these new Pre-Rewritings PR′

i. Then, in
task b) we check the containment in the query by considering the expansions of
all PR′

is w.r.t. V and constructing the canonical databases of these expansions.
We keep only those canonical databases that compute the head of the expan-
sion (or if the expansion is boolean, that make the body true). Note that the
expansion contains constraints coming from the bodies of the view definitions
too. So fresh variables may also appear. However these variables are used only
for checking the containment in the query.

Example 8. (Continued from Example 7). To those Pre-Rewritings obtained in
Phase 1 we add the total order of the corresponding canonical database. So we
have the following Pre-Rewritings:

PR′
1(A) :- v(A,A), A < 8

PR′
2(A) :- v(A,A), A = 8

We then consider the expansion of PR′
1, and PR′

2:

PR
′exp
1 (A) :- r(X), s(A,A), A < 8, A ≤ X,X ≤ A

which simplifies to

PR
′exp
1 (A) :- r(A), s(A,A), A < 8

and,

PR
′exp
2 (A) :- r(X), s(A,A), A = 8, A ≤ X,X ≤ A

which simplifies to

PR
′exp
2 (A) :- r(A), s(A,A), A = 8

We proceed to the construction of the canonical databases of every PR
′exp
i by

considering all variables and constants of the expansion. Here, both PRi’s have
the same set of canonical databases.

D1,1 = {r(a), s(a, a)} : a < 8
D1,2 = {r(a), s(a, a)} : a = 8
D1,3 = {r(a), s(a, a)} : a > 8
D2,1 = {r(a), s(a, a)} : a < 8
D2,2 = {r(a), s(a, a)} : a = 8
D2,3 = {r(a), s(a, a)} : a > 8

We keep only the canonical databases that compute the head of the expansion
of the rewriting. In this example we keep only the canonical databases D1,1, D2,2.

The last step of Phase 2 consists in checking the constraints for each PR′
i

through a two-column tableau constructed as follows. Each row corresponds
to a canonical database of the expansion of PR′

i. We apply the query Q on
this canonical database and if the expansion head is computed, we place the
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Procedure Equivalent rewritings:
(1) Input: A set of Pre-Rewritings PR1, PR2, ..., PRk together with the corresponding
canonical databases D1, D2, ..., Dk

(2) Output: An equivalent rewriting R
(3) Method:
1. For each PRi do:

(a) Construct PR′
i by adding the ACs of the canonical database Di to which PRi

corresponds.
(b) Consider the expansion PR

′exp
i wrt V of PR′

i and all its canonical databases.
(c) Make a two-column tableau as follows: in the left column place the total order

of all canonical databases created from the PR
′exp
i in which Q computes the

head variable of PR
′exp
i . In the right column place the total order of the

canonical databases created from the PR
′exp
i s in which Q does not compute

the head variable of PR
′exp
i .

2. If a constraint appears on the right column of the tableau, then the algorithm fails
(there is no rewriting). If not, then output R = ∪PR′

i.

Fig. 3. Phase 2 of our algorithm

constraint corresponding to the total order of the canonical database in the left
column of the tableau. Otherwise, we place the constraint in the right column.
In the end, if there is at least one constraint on the right column of the tableau
there is no equivalent rewriting to the query. Otherwise, the equivalent rewriting
of Q is the union of PR′

i. Figure 3 presents the steps of Phase 2.

Example 9. (Continued from Example 8). For every canonical database that we
finally keep, we check the corresponding total order through the following tableau:

Q satisfies db Q does not satisfy db
D1,1 : a < 8
D2,2 : a = 8

Since no constraint appears on the right column of the tableau, then the equiv-
alent rewriting R to the query Q consists of the union:

r(A) :- v(A,A), A < 8
r(A) :- v(A,A), A = 8

Example 10. This example illustrates the case when the algorithm detects that
there is no equivalent rewriting and stops. Consider the query and view:

Q : q(A) :- r(A), s(A,A), A ≤ 8
V : v(Y,Z) :- r(X), s(Y,Z), Y ≤ X,X < Z

Phase 1: We construct the canonical databases of Q by considering all vari-
ables of Q and all constants of the query and views:

D1 = {r(a), s(a, a)} : a < 8
D2 = {r(a), s(a, a)} : a = 8
D3 = {r(a), s(a, a)} : a > 8
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We keep those canonical databases on which we compute the head of the
query. That is, we keep only D1, D2. As V (D1) = V (D2) = ∅, the algorithm
would stop in Phase 1, and the query has no equivalent rewriting.

3.4 Soundness and Completeness

To prove soundness and completeness of our algorithm we use Lemma 2 and
Propositions 2 and 3 from Phase 1.

Proposition 4. Let PRi be the Pre-Rewriting computed in Phase 1 of the al-
gorithm corresponding to the canonical database Di of Q. Then, every PR

′exp
i

constructed in Phase 2 still computes the head of Q in Di. Hence, Q � ∪PR
′exp
i .

Proof. (sketch) The PR′
is in Phase 2 are constructed from PRis by adding the

constraints implied by the total order of the corresponding canonical database
Di of Q. So the new constraints do not harm, and ∀i PR

′exp
i still computes the

head of Q in Di.

So far we have proved that our algorithm is complete i.e. if there are rewritings
equivalent to Q with respect to the views in V , then our algorithm finds at least
one. Lemma 3 proves that whenever our algorithm produces a rewriting then
this rewriting is equivalent to the query.

Lemma 3. Let Q be a CQAC query and V a set CQAC views. Let PR = ∪PRi

be the set of Pre-Rewritings. When the algorithm does not fail then the output
R of the algorithm in Figure 3 is an equivalent rewriting of Q using V .

Theorem 3. Given a query and views that are CQACs, our algorithm finds an
equivalent rewriting (if there exists one) in the language of unions of CQACs.

Proof. (sketch) Completeness: a consequence of Propositions 2, 3 and 4.
Soundness: a consequence of Lemma 3.

4 Experimental Results

In this section we present some of the experiments conducted to evaluate the
efficiency of our algorithm. All the experiments were run on a machine with 3GHz
Intel Pentium 4 processor with 512MB RAM and a 80GB hard disk, running the
Windows XP operating system. Figure 4(a), (b) and (c) show that the runtime of
the algorithm depends strongly on the number of distinct variables and constants
in the CQAC queries and CQAC views rather than on the number of views.

Note that a completely naive full-enumeration algorithm would not have a
chance because it would have to enumerate thousands of combinations of view
tuples for a typical query. In simple words, we would not be able to draw the
curves in the graphs as they would go nearly vertically.

In more detail, Figure 4(a) shows the dependence of the runtime on the num-
ber of views where the number of variables is kept constant (6 variables and
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(a) (b)

(c)

Fig. 4. Experimental results

constants). The graphs in Figures 4(b) and 4(c) present the dependence of our
algorithm on both the number of the variables and the number of views. To be
more precise, graph (b) gives the dependence for 10-20 views whereas graph (c)
for 20-60 views.

5 Conclusions

The problem of rewriting queries using views in the presence of arithmetic com-
parisons is an important problem since users often need to pose queries con-
taining inequalities. However the presence of arithmetic comparisons adds more
complexities. The problem of finding an equivalent rewriting (if there exists one)
in the presence of ACs is decidable. The doubly exponential complexity though
calls for an efficient algorithm which will perform better on average than the
complete enumeration algorithm.

In this work we present an algorithm which finds equivalent rewritings for
conjunctive queries with arithmetic comparisons, and prove its correctness. Its
efficiency lies in that it considers fewer candidate rewritings because it includes
a preliminary test to decide for each view whether it is potentially useful in some
rewriting. Experiments conducted to evaluate our algorithm proved its efficiency.
In future work it would be interesting to investigate special cases in which our
algorithm may have lower complexity, such as acyclic queries.
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