Intensional
Programming Il

(Based on the Papers at ISLIP '99]

Editors

Manolis Gergatsoulis
Institute of Informatics & Telecommunications
NCSR "Demokritos” Athens, Greece

Panos Rondogiannis
Department of Computer Science
University of loannina
loannina, Greece

\\’e World Scientific

Singapore « New Jersey * London « Hong Kong

117

EXTENSIONS OF THE BRANCHING-TIME LOGIC
PROGRAMMING LANGUAGE CACTUS

MANOLIS GERGATSOULIS
Institute of Informatics and Telecommunications,
National Centre for Scientific Research (NCSR) “Demokritos”,
153 10 Aghia Paraskevi Attikis, GREECE
E-mail: manolis@iit.demokritos.gr

Cactus has been proposed as a temporal logic programming language based on
the branching notion of time. Cactus supports two main operators: the temporal
operator first which refers to the first moment in time and the temporal operator
next; which refers to the i-th child of the current moment. Actually by next;
we denote a family {next; | i € N'} of next operators, each one referring to a
different next moment that immediately follows the present one. In this paper we
propose the extension of Cactus with new temporal operators. More specifically, we
investigate the use of two variants of the operator next namely the operators Op
and Qg referring to “some next moment” and “all next moments” respectively. We
also investigate the use of branching variants of the well known temporal operators
0 (always) and ¢ (sometime).

1 Introduction

Temporal logic programming languages'? provide a powerful means for the
description and implementation of dynamic systems. Most temporal logic
programming languages!®4%57 are based on linear time temporal logics.
Recently some research work has been done in the direction of developing
temporal logic programming languages based on the branching notion of time.
In89:10 the temporal logic programming language Cactus has been presented.
Cactus is based on a tree-like notion of time; that is, every moment in time
may have more than one immediate next moments.

Cactus supports two main temporal operators: the operator first which
refers to the beginning of time (or alternatively to the root of the tree) and
the operator next; which refers to the i-th child of the current moment (or
alternatively, the i-th branch of the current node in the tree). Notice that we
actually have a family {next; | i € N’} of next operators, each one of them
referring to a different next moments that immediately follows the present
one.

As an example consider the non-deterministic finite automaton shown in
figure 1 which accepts the regular language L = (01U 010)". The behaviour

BUEOpRSE—

118

Figure 1. A non-deterministic finite automaton

of this automaton can be described by the following Cactus program:

first state(qoO).

nexty state(ql) « state(q0).
next, state(q0) + state(qi).
next; state(q2) « state(qi).
nexto state(q0) « state(q2).

Notice that q0 is both the initial and the final state. Posing the goal clause:

« first nexto next; next, state(q0).

will return the answer yes which indicates that the string 010 belongs to the
language L.

In'®, it is argued that Cactus is appropriate for describing non-
deterministic computations or more generally computations that involve the
manipulation of trees. Moreover, as it is shown in!!, a fragment of Cactus can
be used as a target language for the transformation of a subclass of Datalog
programs, namely the chain Datalog ones. The Cactus programs obtained by
applying this transformation are simpler in structure and it is believed (
similar techniques have been successfully used in functional programming’?)
that they can be implemented efficiently.

In this paper, we propose the extension of Cactus with more expressive
temporal operators. More specifically, we investigate the extension of Cactus
with two variants of the operator next namely the operators Of and Qg
referring to “some next moment” and “all next moments” respectively. We

119

also investigate the use of branching variants of the well known temporal
operators [(always) and ¢ (sometime). In particular, we use the operators
Op and O whose intuitive meaning is “some moment in some future of the
first moment in time” and “all moments in all futures of the first moment in
time” respectively.

We show how we can extend the syntax of Cactus by allowing the use of
Og, and Gg in the clause heads and the use of OF, and OF in the clause
bodies, while retaining the SLD-resolution style of the proof procedure.

The rest of the paper is organized as follows: The temporal logic on
which the extended Cactus is based is presented in section 2. The syntax
of the extended Cactus programs is presented in section 3. The declarative
semantics of the extended Cactus programs is given in section 4. In section 3, a
SLD-resolution like roof procedure for extended Cactus programs is outlined.
Finally, section 6 gives the concluding remarks.

2 The branching-time temporal logic

2.1 Temporal operators

In®910 it is presented a simple branching-time temporal logic (BTL) on which
the language Cactus is based. In BTL, time varies over a tree-like structure.
The set of moments in time is modeled by the set List(N) of lists of natural
numbers A. Each node may have a countably infinite number of branches.
The empty list [] corresponds to the beginning of time and the list [i|¢] (that
is, the list with head i € A, and tail t) corresponds to the i-th child of the
moment identified by the list t. In BTL there are two temporal operators
namely the operators first and next;, ¢ € N. The operator first refers to
the first moment in time, while the operator next; refers to the i-th child of
the current moment in time.

Branching-time logics with richer sets of temporal operators than those
of BTL have been proposed in the literature!34. In this section, we consider
the extension of BTL with the temporal operators O, Or, Or and Og. The
intuitive meaning of these temporal operators is as follows:

(QOcA: holds at ¢ iff the formula A is true at every immediate successor
of t.

OrA: holds at t iff there is an immediate successor of ¢ at which Ais
true.

OfA: holds at t iff there is some node in the subtree rooted from ¢ at
which A is true.

OgA: holds at t iff A is true at all nodes of the subtree rooted at .

120

The syntax of the formulae of the extended BTL extends the syntax of
first order logic with four new formation rules: If A is a formula, so are first
A, next; A, Op A, OG A, Op A, and DG A,

In the following we will also use the operators ¢ and B¢, as shorthands
for the sequences of operators “first Qp” and “first Og” respectively.

Notice that the above operators are simiral to the operators of the
branching-time logic proposed- by Ben-Ari, Pnueli and Manna in!3. In par-
ticular, the operators O¢g, Og, and ¢ are denoted in!3 as VG, VX, and 3F
respectively. In!3 two more operators are considered namely the operators VF
and 3G (in our notation Op and Q¢ respectively). The intuitive meaning of
these operators is:

QcA: holds at ¢ iff for all paths departing from t there is a time point
(node) in which A is true.

UOrA: holds at ¢ iff there is a path departing from t such that A is true
at all time points (nodes) of this path.

We do not include these operators in our extended BTL.

2.2 Semantics of the formulas of the extended BTL

The semantics of the formulas of the extended BTL are given using the notion
of branching temporal interpretation.

Definition 2.1. A branching temporal interpretation (or simply temporal
interpretation) I of the extended BTL comprises a non-empty set D, called
the domain of the interpretation, over which the variables range, together
with an element of D for each constant; for each n-ary function symbol, an

element of [D® — DJ; and for each n-ary predicate symbol, an element of
[List(N) — 2P7).

In the following definition, the satisfaction relation |= is defined in terms
of temporal interpretations. =1 ; A denotes that the formula A is true at the
moment ¢ in the temporal interpretation I. Finally, by sot we denote the list
obtained by concatenating the lists s and ¢.

Definition 2.2. The semantics of the elements of the extended BTL are
given inductively as follows:

1.If f(eo,...,en-1) is a term, then I(f(eo,...,en-1)) =
](f)(I(eo),...,I(en_l)).

2. For any n-ary predicate symbol p and terms ep, ..., €en_1,

=1 pleo, ... en-1) iff (I(eo), ..., I(enc1)) € I(p)(2)

2

3. k1 A iff it is not the case that 1 A
4, #[vg AV B 1]7. h[_t A or I=['t B

5. Er: (Yx)A iff [Eqpa/x),e A for all d € D where the interpretation I[d/x]
is the same as I except that the variable x is assigned the value d.

Ere first A iff |=rp) A

Ere next; A iff =g A

Ern: Oc Aiff foralli € N, A

Er: Or A iff for some i € N, =1 i) A

10. k=1 OF A iff for some s € List(N), 1,50t A
11. =y Og A iff for all s € List(N), k=1 50t A

© © N o

Since O and (g are shorthands of the sequences “first Op” and
“first Og” respectively, it is easy to see that:

1. k1 Or A iff for some s € List(N), k=15 A
2. 1 Og A iff for all s € List(N), k=1, A

The semantics of formulas involving the symbols +, =, <, A, and 3 are
defined in the usual way with respect to the semantics of V, — and V.
If a formula A is true in a temporal interpretation I at all moments in

time; the A is said to be true in I (we write =5 A) and [is called a model of
A.

2.3 Arxioms

In this section we present some axioms of the extended BTL which will be
used in this paper. In the following, the symbol V stands for either of first,
next;, Og, Or, Og, and Or. We do not present axioms for the operators
®r -and Bg since. these axioms immediately follow from the axioms of the
operators composing the operators ¢p and Gg.

Temporal operator cancellation rules:

V(tirst A) & (first A) (1)

122

Temporal operator distribution rules:

first (AA B) ¢ (firstA) A (first B)

—
Do
~—

next; (A A B) & (next;A) A (next; B) (3)
V(AAtirst B) & VAAtirst B (4)
first (mA) & -(first A) (5)
next; (-A) & -(next; A) (6)
Or (-4) & - (Og 4) (7)
Or(-4) & - (Oc 4) (8)
Notice that although the following formulas are valid:
 OF(AAB) = OrAAOFB 9)
Or(AAB) -+ QrAAQFB (10)
the inverse implications are not valid.
Other useful axioms The following formulas are valid:
Oc A= Os Q¢ 4 (11)
Or OF A= OrA (12)
Notice also that although the extended BTIL formula:
OFOrA < 0rQp A (13)
1s a tautology, this is not true for the formula
next; Or A & Op next; A (14)

Rigidness of variables: The following tautologies state that the temporal
operators first, next; and Clg can “pass inside” V:

first (VX)(4) & (VX)(first A) (15)
next; (VX)(4) & (VX)(next; A) (16)
Ua(VX)(4) & (VX)(TeA) (17)

However, the operator QF cannot pass inside V since although the implication

Or(VX)(4) = (VX)(OrA) (18)

il

123

is valid, the inverse implication is not.
The validity of formulas 15, 16 and 17 expresses the fact that variables
represent data-values which are independent of time (i.e. they are rigid).
We should also note that the formulas next; next; A and next; next; A
are not equivalent in general when i # j.

3 Syntax of extended Cactus programs

Programs in extended Cactus extend classical Horn clause programs by al-
lowing the temporal operators first, next;, Og, and Og to be used in the
heads of the clauses and the temporal operators first, next;, O, and Of
to be used in the bodies of the clauses. The syntax of the extended Cactus
programs is given formally by the following definitions:

Definition 3.1. A goal is defined as follows:

- A classical atom A is an open goal.

- If G is an open goal then OQF G and next; G are also open goals.

- If G is an open goal then first G, and Of G, are fized goals.

- An open goal or a fixed goal is a goal.

- If G; and G, are goals then G; A G3 is a goal. G A G4 is a fired goal if
both G; and G; are fixed goals otherwise G; A G5 is an open goal.

Definition 3.2. A head is defined as follows:
- An atom A is an open head.
- If H is an open head then Qg H and next; H are also open heads.
- If H is an open head then first H and Cg H are fized heads.
- A head is either an open head or a fixed head.

Definition 3.3. An extended Cactus clause is a formula of the form H « G
where H is a head and G is a (possibly empty) goal. An extended Cactus
program is a set of extended Cactus clauses.

Example 3.1. The following set of clauses is an extended Cactus pro-

gram which defines the relations “parent”, “sibling”, “uncle” and
“grandparent”.

(1) parent(X,Y) « node(X), O node(Y).

(2) sibling(X,Y) « QOr node(X), Or node(Y).

(3) uncle(X,Z) « sibling(X,Y), Or parent(Y,2).

(4) grandparent(X, Y) « node(X), Or Or node(Y).

124

(5) first node(john).

(6) first nexto node(nick).

(7 first next; node(steve).

(8) first nexto next, node(edward).
(9) first nexto next; node(peter).
(10) first next; nexto node(bill).
(11) first next; next; node(mike).

a

Example 3.2. Consider te following clauses redefining the relations
“parent”, “sibling” and “grandparent” of example 3.1:

(1) parent(X,Y) Qr(node(X), Or node(Y)).
(2 sibling(X,Y) < Or(Or node(X), Or node(Y)).
(4") grandparent(X, Y) « O¢(node(X), Or Or node(Y)).

The difference between these definitions and the corresponding definitions
of example 3.1 is that in example 3.1 an instance of one of these relations
may be true in a specific time point and false in some other time points of
the time tree. On the other hand, the relations “parent”, “sibling” and
“grandparent” defined by the clauses 1’ , 2/, 4 are “time-independent” in the
sense that if an instance of one of these relations is true in a specific time
point then it is true in all time points of the time tree.]

Definition 3.4. A head H is said to be in normal form if there are no
occurrences of the operators first and Gg in H in the scope of any other
operator. A goal is in normal form if there are no occurrences of the operators
first or O in the scope of any other operator in the goal. A clause is in
normal form if its head and its body are in normal form.

In the rest of this paper we suppose that all clauses of extended Cactus
programs are formulas in normal form.

4 Declarative Semantics

The declarative semantics of the extended Cactus programs is defined in terms
of the minimal temporal Herbrand models. For this we are based on the notion
of canonical temporal contezt/atom/clause, initially introduced in the context
of the linear time temporal logic programming language Chronolog™3.

125

Definition 4.1. The sequence of the temporal operators which have an
atom in their scope is said to be the temporal contezt of that atom. The
length of a temporal context T (denoted by length(T)) is the number of tem-
poral operators in T. A temporal atom is a classical atom preceded by its
temporal context. A canonical temporal contert is a temporal context of the
form first next;, --- next; , where ij,...,in € N and n > 0. A canoni-
cal temporal atom is a temporal atom whose temporal context is canonical.
A canonical temporal clause is a temporal clause whose temporal atoms are
canonical.

Definition 4.2. A canonical temporal instance of a temporal clause C is a
canonical temporal clause C' obtained as follows:

- Replace each occurrence of Q¢ in the head of C by next; for some
ieN.

- Replace each occurrence of OF in the body of C' by next; for some
JEN.

- Replace each occurrence of @ in the body of C' by first next;,

...next;, where n > 0 and i1,...,i, EN.
- Replace the occurrence of Qg in the head of C (if any) by first next;,
...next;, where m>0and ij,...,im € N.

- Apply the same canonical temporal context to the normal form of C.

The canonical temporal instance of an extended Cactus program P is the
(possibly infinite) extended Cactus program P’ consisting of all canonical
temporal instances of all clauses in P.

Intuitively, a canonical temporal instance of a temporal clause C' is an
instance in time of C. Using the definition 4.2 we can obtain the set of all
temporal instances of a given program clause.

Example 4.1. Consider the following clause taken from example 3.1:
grandparent(X,Y) + node(X),Or Or node(Y).
The set of the canonical temporal instances corresponding to this clause is:

{first next;, ---next; grandparent(X,Y) ¢ first next; ---next; node(X),
first next;, - --next;, next; nexty node(Y) |

i, ., in€N,n>0,jEN kEN})
a

The notion of canonical instance of a clause is very important since the
truth value of a given clause in a temporal interpretation, can be expressed in
terms of the values of its canonical instances, as the following lemma shows:

126

Lemma 4.1 Let C be a clause and [a temporal interpretation of extended
BTL. k=t C if and only if 1 C; for all canonical instances C: of C.

The domain of the temporal Herbrand interpretations of a program P is
its temporal Hebrand universe Up, generated by constant and function sym-
bols that appear in P. The temporal Herbrand base Bp of P consists of all
canonical temporal atoms generated by the predicates of P with terms in I/ P
used as arguments. A temporal Herbrand interpretation is a subset of Bp. A
temporal Herbrand model of a program P is a temporal Herbrand interpreta-
tion which is a model of P.

It can be proved that every extended Cactus program P has a unique
minimal temporal Herbrand model M p which consists of all ground canonical
temporal atoms which are logical consequences of P.

5 A proof procedure for extended Cactus programs

In this section we outline a resolution-type proof procedure for extended Cac-
tus programs, called ECSLD-resolution (Extended Cactus SLD-resolution).
In the following by tc(A) we denote the temporal context of an occurrence of
an atom A in a temporal clause.

Example 5.1. The temporal contexts of the atoms in the clause:
first nexto A « Of B, 9¢(Or (C,nexty D),E).

are:

(
tC(B) =Q0rF
te(C) = OrQF
(D)
(E)

o~

¢(D) = Or OF next,
¢(E) = OF 0

o~

Definition 5.1. If a temporal context T is fixed and Op is the leftmost
operator in T then we say that T is fized by Op.

Notice that, since all program clauses are supposed to be in normal form,
the operator Op in the above definition is one of first, Op and Og.

In order to facilitate the definition of the proof procedure we map the
context T of a head atom into a context denoted by b(T), called the cor-
responding body context of T, by replacing each occurrence of Q¢ in T by
Or and each occurrence of Ue by Or. Moreover, by open(T) we denote the
temporal context obtained as follows: If T is open then open(T) = T, other-

127

wise open(T) is obtained by removing the leftmost operator of T. Finally, by
opendp(T) we denote the temporal context obtained as follows: If T is fixed
by OF then open®p(T) is obtained by removing the leftmost operator of T,
otherwise openQr(T) =T.

Definition 5.2. Two temporal body contexts T3 and T» are said to be non-
unifiable if when we traverse in parallel open®r(T:) and open®p(Tz) from right
to left, we find a pair of corresponding operators which is either (next;, next;),
with i # j, or one of the operators is first and the other is either next;, or
Opr. Two temporal body contexts T} and Ty are said to be unifiable if they
are not non-unifiable.

Definition 5.3. Let T} and T3 be two unifiable temporal body contexts. We
say that T/ is obtained by instantiating Ty with respect to Ty if T} is obtained
from T; by replacing each occurrence of Or in T\ which correspond to an
operator next; in T3, by next;.

Definition 5.4. Let T} and T, be two unifiable temporal body contexts,
and T = open(T;) and T} = open(T3). Let m be the minimum of length(T})
and length(T}). We obtain a pair of temporal body contexts (Rs, Rs) which
we call a prefiz pair of Ty and T3, as follows: We discurd the m rightmost

operators of each one of T{ and T, obtaining T/ and T4 respectively. Then
(Re, Rs) = (T3, TY").

Notice that at least one of Ry, R in the above definition is the empty
temporal context €.

Definition 5.5. Let P be a program in extended Cactus and G be a
(canonical) goal clause. An ECSLD-derivation of P U {G} consists of a (pos-
sibly infinite) sequence of temporal goals Go = G,Gh, - ., G,,...a sequence
Ci,...,Chn,...of clauses of P (called the input clauses), a sequence 6y, .-,
8, ...of most general unifiers, and a sequence of prefix pairs (§8,59), ...,
(§B,8S), ...such that for all ¢, the goal G;4+1 is obtained from the goal G;
as follows:

1. Tg B is a temporal atom (B is the classical atom and Tg its temporal
context) in G; (called the selected atom)

9. Ty B' « BodyC is the input clause Ciy1 (standardized apart from G;)
3. 8;41 = mgu(B, B') and (Sﬂ_l, Sﬁ_l) is the prefix pair of Tp and b(TH)-

4. The new goal Gi41 is obtained as follows:

128

(a) If T is fixed by first and Ty is open then the new goal Giy, is
« (G, tirst S&, BodyC)b;,, where G’ is obtained from G; by
removing B, and instantiating T with respect to (T).

(b) If Tp is fixed by first and Ty is fixed then Giy, is
(G', OFrBodyC)0;4, where G’ is obtained from G; by removing B
and instantiating T with respect to b(Ty).

(c) If both T and Ty are open then: if SP.; is e then Gy is G'0;4y
where G’ is obtained from G; by removing B, puting the BodyC
in the scope of the prefix Sg_l of Tg, and instantiating T with
respect to b(Tx). Otherwise Gity is + (G’, BodyC)8;41, where G’
is obtained from G; by removing B, instantiating Tp with respect
to 5(Ty) and putting Sﬁ_l before the leftmost operator of Tg.

(d) If Tp is fixed by @p and Ty is fixed then Gy is «
(G, OF BodyC)8;41, where G’ is obtained from G; by removing
B, instantiating Tp with respect to (Tx), and replacing the Op
in Tg by O, SP.,, where O, is the leftmost operator of b(Ty) (i.e.
first or Of).

(e) If T is fixed by @ and Ty is open then Gis1is & (G")8;41, where
G’ is obtained from G; by removing B, instantiating T with respect
to b(Tw), replacing ¢r in Tp by ‘Of S’ﬁ_l’ and putting BodyC in
the scope of the prefix ¢ S of Ts.

(f) If Tp is open and Ty is fixed by Or then Gip, is «
(G', O BodyC)b;41, where G’ is obtained from G; by removing
B, instantiating Tp with respect to b(Ty) and putting ‘Or SE,’
before the leftmost operator of Tg.

(8) If Tp is open and Ty is fixed by first then Gy is
(G', OF BodyC)b;4,, where G’ is obtained from G; by removing
B, instantiating Tp with respect to 5(T) and putting ‘first Sﬁ_l’
before the leftmost operator of Tg.

Definition 5.6. Let P be a program in extended Cactus and G be a
(canonical) goal clause. An ECSLD-refutation of PU{G} is a finite ECSLD-

derivation of P U {G} which has the empty goal clause O as the last clause of
the derivation.

Definition 5.7. Let P be a program and G be a canonical temporal goal.
A computed answer for P U {G} is the substitution obtained by restricting

129

the composition 8,85 ..., to the variables of G, where 6,,6,,...,0,, is the
sequence of the most general unifiers used in a ECSLD-refutation of PU{G}.

Example 5.2. Consider the program in example 3.1. An ECSLD-refutation
of the canonical temporal goal:

+ first uncle(X,Z).

is given below (in every derivation step the selected temporal atom is the
underlined one):

+ first uncle(X,Z).

using clause (3)

¢« first sibling(X,Y), first Qp parent(Y,Z)

using clause (2)

+ tirst OF node(X), first Op node(Y),
tirst Of parent(Y,Z)

(Y = nick) using clause (6)

— first O node(X), first Or parent(nick,Z)

using clause (1)
+ first OrF node(X), first Op (node(nick), Or node(Z))
(2 = peter) using clause (9)
+ tirst OF node(X), first nextg ﬁode(nick)

using clause {6)

« first Op node(X)

(X = steve) using clause (7)

O

From the above derivation we conclude that first uncle(steve,peter)
is a logical consequence of the program. a

Example 5.3. Consider the program obtained by replacing the clauses
{1,2,4} in the program of example 3.1 by the clauses {1/,2/,4'} of exam-
ple 3.2. An ECSLD-refutation of the goal:

130

+ first sibling(edward,X).

is given below:

« first sibling(edward,X).

using clause (2')

~ Qr (OF node(edward), OF node(X)).

using clause (8)

+— OrF nexty OF node(X)).

(X = peter) using clause (9)
a a

In the presentation of the proof procedure we have supposed that the top-
level goal is canonical. However, the proof procedure can be extended for the
case of non-canonical top level goals. In this case, besides the substitutions of
the variables of the goal, we may also find a sequence of temporal operators
which should be applied to the goal in order to be logical consequence of the
program.

6 Discussion

In this paper, we investigate the extension of the branching-time logic pro-
gramming language Cactus'® with new, more expressive, temporal operators.
In particular, we are interested in extensions of Cactus for which we can de-
fine SLD-resolution style refutation proof procedures. We show how we can
extend Cactus to allow also the use of the operators OF, and OF in the bodies
of the clauses and the operators QOg, and Og in the heads of the clauses.

Following the work concerning the linear time logic programming language
TEMPLOG?*, in which the linear time temporal operator ¢ is allowed in the
bodies of the clauses, we examined the possibility to allow the unlimited use
of the operator {r in the clause bodies. However, this seems to be a difficult
task for the case of branching-time logic programming. The reason is that
while in the linear case the formula:

next 0 A & O next A

is valid and thus it is always possible to move ¢ in front of a temporal context,
in banching time logic BTL the formula:

131

next; Op A & OF next; A

is not valid and thus Qr cannot allways be pulled to the front of a temporal
context. The existence of Qr in the context of a selected atom, in places other
than the leftmost one, introduces nondeterminism when attempting to unify
temporal contexts that contain (. Because of this difficulty, we only allow
the use of a restricted form of this operator (i.e. the operator ¢ which is
equivalent to the operator ¢ preceded by the operator first).

An interesting topic for future work is to investigate the possibility to

allow also the use of the operators ¢ and OF in the syntax of the extended
Cactus.

Acknowledgements

I would like to thank C. Nomikos for his helpful comments.

References

1. M. A. Orgun and W. Ma. An overview of temporal and modal logic
programming. In D. M. Gabbay and H. J. Ohlbach, editors, Proc. of the
First International Conference on Temporal Logics (ICTL’94), Lecture
Notes in Computer Science (LNCS) 827, pages 445-479. Springer-Verlag,
1994.

2. M. Fisher and R. Owens. An introduction to executable modal and
temporal logics. Lecture: Notes in Artificial Intelligence (LNAI) 897.
Springer-Verlag, February 1995.

3. M. A. Orgun, W. W. Wadge, and W. Du. Chronolog(Z): Linear-time
logic programming. In O. Abou-Rabia, C. K. Chang, and W. W. Koczko-
daj, editors, Proc. of the Fifth International Conference on Computing
and Information, pages 545-549. IEEE Computer Society Press, 1993.

4. M. Baudinet. A simple proof of the completeness of temporal logic pro-
gramming. In L. Farinas del Cerro and M. Penttonen, editors, Intensional
Logics for Programming, pages 51-83. Oxford University Press, 1993.

5. C. Brzoska. Temporal logic programming with bounded universal modal-
ity goals. In D. S. Warren, editor, Proc. of the Tenth International
Conference on Logic Programming, pages 239-256. MIT Press, 1993.

6. M. Gergatsoulis, P. Rondogiannis, and T. Panayiotopoulos. Disjunctive
Chronolog. In M. Chacravarty, Y. Guo, and T. Ida, editors, Proceed-

132

10.

11.

12.

13.

14.

ings of the JICSLP’96 Post-Conference Workshop “Multi-Paradigm Logic
Programming”, Pages 129-136, Bonn, 5-6 Sept. 1996.

M. A. Orgun. Intensional logic programming. PhD thesis, Dept. of
Computer Science, University of Victoria, Canada, December 1991.

P. Rondogiannis, M. Gergatsoulis, and T. Panayiotopoulos. Cactus: A
branching-time logic programming language. In D. Gabbay, R. Kruse,
A. Nonnengart, and H. J. Ohlbach, editors, Proc. of the First Interna-
tional Joint Conference on Qualitative and Quantitative Practical Rea-
soning, ECSQARU-FAPR’97, Bad Honnef, Germany, Lecture Notes in
Artificial Intelligence (LNAI) 1244, pages 511-524. Springer, June 1997.

- M. Gergatsoulis, P. Rondogiannis, and T. Panayiotopoulos. Proof proce-

dures for branching-time logic programs. In W. W. Wadge, editor, Proc.
of the Tenth International Symposium on Languages for Intensional Pro-
gramming (ISLIP’97}, May 15-17, Victoria BC, Canada, pages 12-26,
1997.

P. Rondogiannis, M. Gergatsoulis, and T. Panayiotopoulos. Branching-
time logic programming: The language Cactus and its applications. Com-
puter Languages, 24(3):155-178, October 1998.

P. Rondogiannis and M. Gergatsoulis. The intensional implementation
technique for chain datalog programs. In Proc. of the 11th International
Symposium on Languages for Intensional Programming (ISLIP’98), May
7-9, Palo Alto, California, USA, pages 55-64, 1998.

P. Rondogiannis and W. W. Wadge. First-order functional languages and
intensional logic. Journal of Functional Programming, 7(1):73-101, 1997.
M. Ben-Ari, A. Pnueli, and Z. Manna., The temporal logic of branching
time. Informatica, pages 207-226, 1983.

E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 995-1072.
Elsevier Science Publishers, B. V., 1990.

E L B

