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Abstract

The notion of branching time has been shown to be a promising means of implementing first
and higher-order functional languages. More specifically, functional programs are transformed
into zero-order branching-time programs which can then be executed in a tagged demand-
driven way. Although this approach has been widely used in Lucid implementations, it has
not been shown to apply to logic programming languages as well. In this paper we propose a
transformation algorithm from a subclass of logic programs to branching time logic programs,
making in this way the first step towards an intensional implementation technique for logic
programming languages.

1 Introduction

The main technique that has been used in implementing functions in intensional languages such as
Lucid and GLU, is based on the notion of branching time. More specifically, the functional program
is transformed into a zero-order branching time program [Yag84, Wad91, Ron94, RW97], which
can then be easily executed using tagged, demand-driven evaluation (also called eduction [FW87,
DW90]). Of course, the technique need not be restricted to intensional functional languages. Tt
can also be applied on more mainstream functional languages, giving a promising alternative to
the reduction-based implementations [Jon87].

It is therefore natural to ask whether a similar intensional-logic based implementation tech-
nique exists for logic programming languages. The question was first examined by Rolston and
Faustini (see for example [RF93]), who considered the transformation of Prolog programs into
intensional ones that could be executed in a dataflow way. However, their target language is not a
branching time one. Our work aims at exactly this point: to examine whether logic programs can
be transformed into simpler in structure branching-time logic programming ones. In this paper
we present work in progress towards this goal. More specifically, we define a transformation algo-
rithm from a class of logic programs (the chain Datalog ones) to the class of unary branching-time
logic programs. In this way we set the basis for a new dataflow approach for implementing logic
programming languages (and of course temporal logic programming languages such as Chronolog

[Wad88, Orgdl, OW92)).

*This work has been partially supported by the Greek General Secretariat of Research and Technology under the
project “Logic Programming Systems and Environments for Developing Logic Programs” of IIENEA’95, contract
no 952.



2 Preliminaries

In the languages we adopt, we assume the existence of constants (denoted by a, b, c), variables
(denoted by X, Y, Z) and predicates (p, q, r). A term is either a variable or a constant. An
atom is a formula of the form p(eq,...,en—1) where eg,...,e,_; are terms.

In the following, we assume familiarity with the basic notions of logic programming. Datalog is
the subset of logic programming that does not use function symbols. We are particularly interested
in the class of chain Datalog programs, which is defined below:

Definition 2.1. [DG95] A chain rule is a clause of the form

p(X,Z) — q1(X,Y1),92(Y1,Y2), ..., ds41(Ys, Z).

where k > 0, and X, Z and each Y, are distinct variables. Here q(X,Z) is the head and
A1(X,Y1),92(Y1,Y2), ..., pr+1(Yi,Z) is the body. The body becomes q;(X,Z), when k = 0.
A chain Datalog program is a finite set of rules. Programs are denoted by P. A goal is of the form
+ q(a,X), where a is a constant, X is a variable and q is a predicate.

Definition 2.2. A simple chain Datalog program is one in which all rules have at most two atoms
in their body.

Notice that each chain rule contains no constants and has at least one atom in its body.
Moreover, notice that we assume that the first argument of a goal atom is always ground. The
necessity of this assumption will become clear in later sections.

The first argument of a predicate will often be called its input argument, while the second one
its output argument. It is customary to distinguish two classes of predicates in a given (chain)
Datalog program:

e The IDB predicates, which are the ones that appear in rule heads and possibly in rule bodies.
e The EDB predicates, which can appear in rule bodies only.

The semantics of (chain) Datalog programs can be defined in accordance to the semantics of
classical logic programming. The notions of minimum model and tmmediate consequence operator
Tp, transfer directly.

3 Branching Datalog

Braching Datalog programs are Cactus programs [RGP97] without function symbols. The syntax of
Branching Datalog programs is an extension of the syntax of Datalog programs. More specifically,
the temporal operators first and call;, i € NV, are added to the syntax of Datalog. The declarative
reading of these temporal operators will be discussed shortly.

A temporal reference is a sequence (possibly empty) of the above temporal operators. A canoni-
cal temporal referenceis a temporal reference of the form first call;, - - -call; , where iy,...,i, € N
and n > 0. An open temporal reference is a temporal reference of the form call;, - - - call; , where
i1,...,0, € N and n > 0.

A temporal atom is an atom preceeded by either a canonical or an open temporal reference. A
temporal clause is a formula of the form:

H « Bi,...,B,,.

where H, B4, ..., B, are temporal atoms and m > 0. If m = 0, the clause is said to be a unit
temporal clause. A Branching Datalog program is a finite set of temporal clauses. A goal clause
in Branching Datalog is a formula of the form < A ..., A, where A;, i = 1,...,n are temporal
atoms.

Branching Datalog is based on a relatively simple branching time logic (BTL). In branching
time logic, time has an initial moment and flows towards the future in a tree-like way. The set



of moments in time can be modelled by the set List(N) of lists of natural numbers A. Thus,
each node may have a countably infinite number of branches (call operators). The empty list [ ]
corresponds to the beginning of time and the list [¢]{] (that is, the list with head %, where i € N,
and tail ¢) corresponds to the i-th child of the moment identified by the list . BTL uses the
temporal operators first and call;, i € A'. The operator first is used to express the first moment
in time, while call; refers to the i-th child of the current moment in time. The syntax of branching
time logic extends the syntax of first-order logic with two formation rules: if A is a formula then
so are first A and call; A.

The semantics of temporal formulas of BT'L are given using the notion of branching temporal
interpretation [RGP97]. Branching temporal interpretations extend the temporal interpretations
of the linear time logic of Chronolog [Org91].

Definition 3.1. A branching temporal interpretation or simply a temporal interpretation I of the
temporal logic BT'L comprises a non-empty set D, called the domain of the interpretation, together
with an element of D for each variable; for each constant, an element of D; and for each n-ary
predicate symbol, an element of [List(N) — 2P"].

In the following definition, the satisfaction relation | is defined in terms of temporal interpre-
tations. =7+ A denotes that a formula A is true at a moment ¢ in some temporal interpretation

1.

Definition 3.2. The semantics of the elements of the temporal logic BT'L are given inductively
as follows:

1. For any n-ary predicate symbol p and terms eq, ..., e,_1,
Er:pleo,....,enc1) iff (I(eo),..., I(enz1)) € I(p)(t)
Er: —A iff it is not the case that Ery A

Er«: AABff Er Aand =1 B

Er« AVBiff Eri AorEr: B

Fre (YX)A iff Erax)e A for all d € D where the interpretation I[d/x] is the same as I
except that the variable x is assigned the value d.

6. ':I,t first A iff ':L[] A
7. ':I,t calli A Zﬁ ':IV[Z'V] A

Tt W N

If a formula A is true in a temporal interpretation / at all moments in time, it is said to be
true in I (we write =5 A) and 7 is called a model of A.

3.1 Semantics of Branching Datalog

The semantics of Branching Datalog are defined in terms of temporal Herbrand interpretations. A
notion that 1s crucial in the discussion that follows, is that of canonical instance of a clause, which
is formalized below.

Definition 3.3. A canonical temporal atom is a temporal atom whose temporal reference is
canonical. An open temporal atom is a temporal atom whose temporal reference is open. A
canonical temporal clause is a temporal clause whose temporal atoms are canonical.

It can be shown that every Branching Datalog program can be transformed into a (possibly
infinite) set of canonical temporal clauses, which has the same set of temporal models as the initial
program (see Lemma 3.1 below). Therefore, the transformation prererves the set of canonical
atoms that are logical consequences of the program. The construction of this set of canonical
temporal clauses is formalized by the following definitions:



Definition 3.4. A canonical temporal instance of a temporal clause C is a canonical temporal
clause C’ which can be obtained by applying the same canonical temporal reference to all open
atoms of C.

The notion of canonical instance of a clause is very important since the truth value of a given
clause in a temporal interpretation, can be expressed in terms of the values of its canonical in-
stances, as the following lemma shows:

Lemma 3.1 Let C be a clause and I a temporal interpretation of BTL. |=r C if and only if
Er C; for all canonical instances Cy of C.

As in Datalog, the set Up generated by constant symbols that appear in P, called Herbrand
unwwerse, 1s used to define temporal Herbrand interpretations. Temporal Herbrand interpretations
can be regarded as subsets of the temporal Herbrand Base T Bp of P, consisting of all ground
canonical temporal atoms whose predicate symbols appear in P and whose arguments are terms in
the Herbrand universe Up of P. A temporal Herbrand model is a temporal Herbrand interpretation,
which is a model of the program.

In analogy with the theory of logic programming, the model ntersection property holds for
temporal Herbrand models. The intersection of all temporal Herbrand models denoted by M (P),
is a temporal Herbrand model, called the least temporal Herbrand model.

The following theorem says that the least temporal Herbrand model consists of all ground
canonical temporal atoms which are logical consequences of P.

Theorem 3.1 Let P be a Branching Datalog program. Then

M(@P)={AcTBp |PEA}.

A fixpoint characterization of the semantics of Branching Datalog programs is provided using a
closure operator that maps temporal Herbrand interpretations to temporal Herbrand interpreta-
tions:

Definition 3.5. Let P be a Branching Datalog program and 7'Bp the temporal Herbrand base
of P. The operator Tp : 2787 — 27Br ig defined as follows:

Tp(I) ={A | A « By,...,B,, is a canonical ground instance of a program clause in P and
{By,...,B,} C I}

It can be proved that T'Bp is a complete lattice under the partial order of set inclusion (C).
Moreover, Tp is continuous and hence monotonic over the complete lattice (T Bp, C), and therefore
Tp has a least fixpoint. The least fixpoint of Tp provides a characterization of the minimal
Herbrand model of a Branching Datalog program, as it is shown in the following theorem.

Theorem 3.2 Let P be a Branching Datalog program. Then
M(P) =1fp(Tp) =Tp T w.

In the following sections we will also use the notation M (P,p) to denote the set of atoms in
M (P) whose predicate symbol is p.

4 The Transformation Algorithm

In the following we present an algorithm which transforms every simple chain datalog program P
into an equivalent intensional program P* which has the following properties:

1. All predicates in P* are unary.

2. There i1s at most one atom in the body of each clause in P*.



The transformation algorithm is as follows:

For each predicate p we introduce two unary predicates pg and pi, where pg corresponds to
the first argument of p while p; corresponds to the second argument of p. At various points in
the transformation we use intensional operators of the form call;. Each new such operator that
we introduce 1s assumed to have a different index ¢ than all previous operators used.

1. Each unit clause (fact) in P of the form:

p(eOa el) .
1s transformed 1nto a clause in P* of the form:
pl(el) — Po(eo)~
2. Each clause in P of the form:
P(X,Y) +q(X,Y).
1s transformed 1nto two clauses 1n P* of the form:
p1(Y) « call; q:(Y)
call; qo(X) + po(X).

3. Each non unit clause in P of the form:
p(X,Y) «q(X,Z),r(Z,Y).

1s transformed into the set of clauses:

p1(Y) « call; r1(Y).
call; ro(Z) « call; q1(Z).
call; qo(X) + po(X).

4. The goal clause:
< p(a,Y)

1s transformed into the clauses:
+ first p1(Y).

first po(a).

Example 4.1. Let P ={Iy, 5, I3} U{FE}, Es, E3} be a chain Datalog program where:

(11) < p(a,Y).

(I2) p(X,Z) « e(X,2).

(13) p(X,Z) — p(X,Y),e(Y,Z)
(E1) e(a,b)

(E2) e(b, )

(E) e(c,d)

The corresponding intensional program P! obtained by applying the transformation algorithm
as follows:
Transforming clause I; we get:

+ first py(Y).
first po(a).

Transforming I, we get:



p1(Z) + call; e;(Z).
cally eo(X) < po(X).

Transforming I3 we get:

pi1(Z) + calls es(Z).
calls eg(Y) + cally pi(Y).
cally po(X) < po(X).

Finally, transforming the clauses £y — E3 (corresponding to the EDB atoms) we get:

e;(b) «— eofa).
ei(c) « eo(b).
e;(d) + eofc)

5 Correctness Proof

Chain Datalog programs can be shown to be equivalent to simple chain Datalog programs, as the
following proposition demonstrates.

Proposition 5.1 Every chain Datalog program P can be transformed into a simple Datalog pro-
gram Py such that for every predicate symbol p, it holds M(P,p) = M(Ps, p).

Proof: Consider a chain rule in P of the form
PX,Z) —aqi(X, Y1), q2(Y1,Y2), .., ap1(Yr, Z). (1)

where k > 2. The rule (1) can be replaced by the two following rules (in which r is a new predicate
name that we introduce):

p(X,Z) « q1(X,Y1),r(Y1,Z). (2)
r(X,Z) — q2(Y1,Y2), ..., ar1(Yr, Z). (3)

Now, clause (2) has two atoms in its body, while clause (3) has & (one less than clause (1) initially
had). We can apply the same process on clause (3), and continuing in this way we end-up with a
simple chain Datalog program P;.

It is easy to see that M (P,p) = M (Ps, p) as the new clauses we introduce can be considered as
Fureka definitions while the replacement of q2(Y1,Y2), ..., qs4+1(Yk,Z) by ¥(Y1,Z) is a folding
step [TS84, Ger94, GK94]. Now the derired result is an immediate consequence of the correctness
of the fold/unfold transformation system. (]

Let P be a program and P* the translated intensional one. We show the following lemma:

Lemma 5.1 Let p be a predicate defined in P and let R be a canonical temporal reference. If
R po(a) € Tp« T w and p(a,b) € Tp T w then R p1(b) € Tp: T w.

Proof: We show the above by induction on the approximations of Tp 1 w.

Induction Basis:
To establish the induction basis, we need to show that if R pg(a) € Tp+ Tw and p(a,b) € Tp 1 0
then R pi(b) € Tp+ T w.

But p(a,b) € Tp 1 0 means that in P there exists a fact p(a,b) (or a fact p(a,Y), or a fact
p(X,b), or p(X,Y)). We consider the case p(a,b) (the other cases can be examined in a similar



way). According to the transformation algorithm, in P* there exists the rule p;(b) < pg(a).
Using this and the fact that R pg(a) € Tp+ T w we conclude that R p1(b) € Tp+ T w.

Induction Hypothesis:
We assume that if R pg(a) € Tp« T w and p(a,b) € Tp 1 k then R p1(b) € Tp+ 1 w. Notice that
the induction hypothesis holds for any p in P and any temporal reference R.

Induction Step:
We show that if R pg(a) € Tp+ Tw and p(a,b) € Tp 1 (k+ 1) then R p1(b) € Tp+ T w.
Case 1: Assume that p(a,b) has been added in Tp 1 (k + 1) using a rule of the form:

p(X, Y) — Q(Xa Z)’ I‘(Z’ Y) (0)

But then, there exists a constant ¢ such that q(a,¢) € Tp 1 k and r(c,b) € Tp 1 k.
Consider now the transformation of the above clause (0) in program P*. The new clauses
obtained are:

p1(Y) + call; r1(Y). (1)
call; ro(Z) « call; qi(Z). (2)
call; qo(X) + po(X). (3)

Using the assumption that R pg(a) € Tp« 1 w together with clause (3) above, we get that
R call; qo(a) € Tp+ T w. Given this, we can now apply the induction hypothesis on g which gives:

Since R call; qo(a) € Tp+ Tw and q(a,¢) € Tp 1 k then R call; qi(c) € Tp+ T w.

Using now the fact that R call; qi(c) € Tp+ T w together with clause (2) we get R call; ro(c) €
Tp+ T w. Given this, we can now apply the induction hypothesis on r which gives:

Since R call; ro(c) € Tps tw and v(c,b) € Tp 1 k then R call; r1(b) € Tp+ T w.

Using now the fact that R call; r1(b) € Tp+ 1 w together with clause (1), we get the desired result
which is that R p1(b) € Tp+ 1T w.
Case 2: Assume that p(a,b) has been added in Tp 1 (k + 1) using a rule of the form:

P(X,Y) < q(X,Y) (0)

This implies that gq(a,b) € Tp 1 k. Consider now the transformation of the above clause (0) in
program P*. The new clauses obtained are:

p1(Y) < call; q:(Y). (1)
call; qo(X) « po(X). (2).

Using the assumption that R pg(a) € Tp+ 1 w together with clause (2) above, we get that
R call; qp(a) € Tp+ T w. Given this, we can now apply the induction hypothesis on q which
gives:

Since R call; qo(a) € Tp+ T w and q(a,b) € Tp 1 k then R call; q1(b) € Tp+ T w.
But this together with clause (1) above gives R pi(b) € Tp+ 1 w, which is the desired result. [

Lemma 5.2 Let P be a simple chain Datalog program and ?p(a, X) be a goal clause. Let P* be
the intensional program obtained by applying the tranformation algorithm to P U {+ p(a,X)}. If
p(a,b) € Tp Tt w then first p1(b) € Tp+ T w.

Proof: Since by transforming the goal clause, the fact first pg(a) is added to P*, this lemma is
a special case of lemma 5.1. ]

We now show the following lemma which is the “inverse” of lemma 5.1:



Lemma 5.3 Let p be a predicate defined in P and let R be a canonical temporal reference. If
R p1(b) € Tp+ T w then there exists a constant a such that p(a,b) € Tp T w and R po(a) € Tp+ 1
w.

Proof: We show the above by induction on the approximations of Tp+ T w.

Induction Basis:
To establish the induction basis, we need to show that If R py(b) € Tp» 1 0 then there exists a
constant a such that p(a,b) € Tp t w and R pg(a) € Tp+ 1 0.

But R pi(b) € Tp+ 1 0 is false because in Tp+ 1 0 there belong only temporal atoms regarding
input predicates. Therefore, the basis case holds vacously.

Induction Hypothesis:
If R pi(b) € Tp- 1 k then there exists a constant a such that p(a,b) € Tp T w and R pg(a) €

Induction Step:
We show that if R pi(b) € Tp+~ 1 (k+ 1) then there exists a such that p(a,b) € Tp 1 w and

Case 1. Assume now that there exists in P a rule of the form:
P(X,Y) < q(X,Z),r(Z,Y). (0)

Consider now the transformation of the above clause (0) in program P*. The new clauses obtained
are:

p1(Y) + call; r1(Y). (1)
call; ro(Z) « call; qi(Z). (2)
call; qo(X) + po(X). (3)

Assume also that R pi(b) has been introduced in Tp« 1 (k + 1) by clause (1) above. Then,
this means that R call; r1(b) € Tp+ 1 k. By the induction hypothesis, we get that there exists a
constant ¢ such that r(c,b) € Tp T w and R call; vo(c) € Tp- 1 k.

Notice now that the only way that R call; ro(c) € Tp» T k can have been obtained is by using
clause (3) above (all other clauses defining predicate rg, have a different index in the call operator.
Therefore, using clause (2) above, we then get that R call; qi(c) € Tp+ 1 (k — 1) which means
that R call; qi(c) € Tp+ 1 k. Using the induction hypothesis, we get that there exists a constant
a such that q(a,c¢) € Tp T w and R call; qo(a) € Tp+« 1 k. But then, using clause (3) above as
before we get R po(a) € Tp+ T (k — 1), which implies that R pg(a) € Tp» 1 k. Moreover, since
q(a,c) € Tp tw and r(c,b) € Tp T w from (0) we also get p(a,b) € Tp 1 w. Using these results
we derive the desired lemma.

Case 2: Assume that in P there exists a rule of the form:

P(X,Y) < q(X,Y) (0)

Consider now the transformation of the above clause (0) in program P*. The new clauses obtained

are: p1(Y) < call; q:(Y). (1)
call; qo(X) « po(X). (2).

Assume also that R pi(b) has been introduced in Tp« 1 (k + 1) by clause (1) above. Then, this
means that R call; q1(b) € Tp~ 1T k. By the induction hypothesis, we get that there exists a
constant a such that R call; qp(a) € Tp+ 1 k and q(a,b) € Tp 1 w. Using clause (0), we get that
p(a,b) € Tp Tt w.

Using clause (2) above together with the fact that R call; qo(a) € Tp- 1 k, we get R po(a) €
Tp« T (k — 1), which implies that R po(a) € Tp- 1 k.

Case 3: Assume that in P there exists a fact of the form:

p(a,b). (0)



Consider now the transformation of the above clause (0) in program P*. The new clause obtained
1s:

pi(b) < po(a). (1)

Assume now that R pi(b) has been introduced in Tp+ 1 (k + 1) by clause (1) above. This
means that R po(a) € Tp« 1 k and therefore R pg(a) € Tp- 1 (k+1). Moreover, p(a,b) € Tp T w,
because p(a,b) is a fact in P.

This concludes the proof of the particular case and of the lemma. [

Lemma 5.4 Let P be a simple chain Datalog program and ?p(a, X) be a goal clause. Let P* be
the intensional program obtained by applying the tranformation algorithm to P U {+ p(a,X)}. If
first p1(b) € Tp+ T w then p(a,b) € Tp T w.

Proof: From lemma 5.3 we have that there is a constant ¢ such that p(c, b) € Tp 1w and first
po(c) € Tp« T w. But as the only instance of first pg(X) in Tp+ 1w is first pg(a) then c = a. m

Theorem 5.1 Let P be a simple chain Datalog program and ?p(a, X) be a goal clause. Let P* be
the intensional program obtained by applying the tranformation algorithm P U {< p(a,X)}. Then
first p1(b) € Tp+ tw iff p(a,b) € Tp T w.

Proof: It is an immediate consequence of lemmas 5.2 and 5.4. ]

6 Conclusions

In this paper, we have developed a transformation algorithm from chain Datalog programs to
Branching Datalog ones. The programs obtained by this transformation have the following inter-
esting properties:

e All predicates are unary

e Every rule has at most one atom in its body

Apart from 1ts theoretical interest, the transformation algorithm can be viewed as an implementa-
tion technique for chain Datalog programs. In fact, the programs that result from the transforma-
tion can be easily executed using appropriate SLD-like proof procedures that have been developed
for temporal logic programming languages [GRP97, RGP97]). Such an implementation may use
techniques borrowed from the dataflow area of research (such as tagging, warehousing, etc.). Tt re-
mains to be seen whether such an approach can compete with the usual implementation strategies
adopted in the case of Datalog programs.
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