
The Intensional Implementation Technique for Chain

Datalog Programs�

P� Rondogiannis� and M� Gergatsoulis�

� Dept� of Computer Science� University of Ioannina�
P�O� BOX ����� ����� Ioannina� Greece�

e mail� prondo	zeus�cs�uoi�gr

� Inst� of Informatics 
 Telecom�� N�C�S�R� �Demokritos��
��
 �� A� Paraskevi Attikis� Greece
e mail� manolis	iit�nrcps�ariadne�t�gr

Abstract

The notion of branching time has been shown to be a promising means of implementing �rst

and higher�order functional languages� More speci�cally� functional programs are transformed

into zero�order branching�time programs which can then be executed in a tagged demand�

driven way� Although this approach has been widely used in Lucid implementations� it has

not been shown to apply to logic programming languages as well� In this paper we propose a

transformation algorithm from a subclass of logic programs to branching time logic programs�

making in this way the �rst step towards an intensional implementation technique for logic

programming languages�

� Introduction

The main technique that has been used in implementing functions in intensional languages such as
Lucid and GLU� is based on the notion of branching time� More speci�cally� the functional program
is transformed into a zero�order branching time program �Yag��� Wad��� Ron��� RW�	
� which
can then be easily executed using tagged� demand�driven evaluation �also called eduction �FW�	�
DW��

� Of course� the technique need not be restricted to intensional functional languages� It
can also be applied on more mainstream functional languages� giving a promising alternative to
the reduction�based implementations �Jon�	
�

It is therefore natural to ask whether a similar intensional�logic based implementation tech�
nique exists for logic programming languages� The question was �rst examined by Rolston and
Faustini �see for example �RF��

� who considered the transformation of Prolog programs into
intensional ones that could be executed in a data�ow way� However� their target language is not a
branching time one� Our work aims at exactly this point� to examine whether logic programs can
be transformed into simpler in structure branching�time logic programming ones� In this paper
we present work in progress towards this goal� More speci�cally� we de�ne a transformation algo�
rithm from a class of logic programs �the chain Datalog ones
 to the class of unary branching�time
logic programs� In this way we set the basis for a new data�ow approach for implementing logic
programming languages �and of course temporal logic programming languages such as Chronolog
�Wad��� Org��� OW��

�

�This work has been partially supported by the Greek General Secretariat of Research and Technology under the

project �Logic Programming Systems and Environments for Developing Logic Programs� of �ENE����� contract

no ���	

�



� Preliminaries

In the languages we adopt� we assume the existence of constants �denoted by a� b� c
� variables
�denoted by X� Y� Z
 and predicates �p� q� r
� A term is either a variable or a constant� An
atom is a formula of the form p�e��� � � �en��
 where e������en�� are terms�

In the following� we assume familiarity with the basic notions of logic programming� Datalog is
the subset of logic programming that does not use function symbols� We are particularly interested
in the class of chain Datalog programs� which is de�ned below�

De�nition ���� �DG��
 A chain rule is a clause of the form

p�X�Z
� q��X�Y�
�q��Y��Y�
� � � � �qk���Yk�Z
�

where k � �� and X� Z and each Yi are distinct variables� Here q�X�Z
 is the head and
q��X�Y�
�q��Y��Y�
� � � � �pk���Yk�Z
 is the body� The body becomes q��X�Z
� when k � ��
A chain Datalog program is a �nite set of rules� Programs are denoted by P� A goal is of the form
� q�a�X
� where a is a constant� X is a variable and q is a predicate�

De�nition ���� A simple chain Datalog program is one in which all rules have at most two atoms
in their body�

Notice that each chain rule contains no constants and has at least one atom in its body�
Moreover� notice that we assume that the �rst argument of a goal atom is always ground� The
necessity of this assumption will become clear in later sections�

The �rst argument of a predicate will often be called its input argument� while the second one
its output argument� It is customary to distinguish two classes of predicates in a given �chain

Datalog program�

� The IDB predicates� which are the ones that appear in rule heads and possibly in rule bodies�

� The EDB predicates� which can appear in rule bodies only�

The semantics of �chain
 Datalog programs can be de�ned in accordance to the semantics of
classical logic programming� The notions of minimum model and immediate consequence operator
TP� transfer directly�

� Branching Datalog

Braching Datalog programs are Cactus programs �RGP�	
 without function symbols� The syntax of
Branching Datalog programs is an extension of the syntax of Datalog programs� More speci�cally�
the temporal operators �rst and calli� i � N � are added to the syntax of Datalog� The declarative
reading of these temporal operators will be discussed shortly�

A temporal reference is a sequence �possibly empty
 of the above temporal operators� A canoni�
cal temporal reference is a temporal reference of the form�rst calli� � � �callin � where i�� � � � � in � N
and n � �� An open temporal reference is a temporal reference of the form calli� � � �callin � where
i�� � � � � in � N and n � ��

A temporal atom is an atom preceeded by either a canonical or an open temporal reference� A
temporal clause is a formula of the form�

H� B�� ����Bm�

where H�B�� ����Bm are temporal atoms and m � �� If m � �� the clause is said to be a unit
temporal clause� A Branching Datalog program is a �nite set of temporal clauses� A goal clause
in Branching Datalog is a formula of the form � A�� ����An where Ai� i � �� ���� n are temporal
atoms�

Branching Datalog is based on a relatively simple branching time logic �BTL
� In branching
time logic� time has an initial moment and �ows towards the future in a tree�like way� The set

�



of moments in time can be modelled by the set List�N 
 of lists of natural numbers N � Thus�
each node may have a countably in�nite number of branches �call operators
� The empty list � 

corresponds to the beginning of time and the list �ijt
 �that is� the list with head i� where i � N �
and tail t
 corresponds to the i�th child of the moment identi�ed by the list t� BTL uses the
temporal operators �rst and calli� i � N � The operator �rst is used to express the �rst moment
in time� while calli refers to the i�th child of the current moment in time� The syntax of branching
time logic extends the syntax of �rst�order logic with two formation rules� if A is a formula then
so are �rst A and calli A�

The semantics of temporal formulas of BTL are given using the notion of branching temporal
interpretation �RGP�	
� Branching temporal interpretations extend the temporal interpretations
of the linear time logic of Chronolog �Org��
�

De�nition ���� A branching temporal interpretation or simply a temporal interpretation I of the
temporal logic BTL comprises a non�empty set D� called the domain of the interpretation� together
with an element of D for each variable� for each constant� an element of D� and for each n�ary
predicate symbol� an element of �List�N 
 � �D

n


�

In the following de�nition� the satisfaction relation j� is de�ned in terms of temporal interpre�
tations� j�I�t A denotes that a formula A is true at a moment t in some temporal interpretation
I�

De�nition ���� The semantics of the elements of the temporal logic BTL are given inductively
as follows�

�� For any n�ary predicate symbol p and terms e�� � � � � en���

j�I�t p�e�� � � � � en��
 i� hI�e�
� � � � � I�en��
i � I�p
�t


�� j�I�t �A i� it is not the case that j�I�t A

�� j�I�t A �B i� j�I�t A and j�I�t B

�� j�I�t A �B i� j�I�t A or j�I�t B

�� j�I�t �	x
A i� j�I�d�x��t A for all d � D where the interpretation I�d�x
 is the same as I
except that the variable x is assigned the value d�

�� j�I�t �rst A i� j�I�� � A

	� j�I�t calli A i� j�I��ijt� A

If a formula A is true in a temporal interpretation I at all moments in time� it is said to be
true in I �we write j�I A
 and I is called a model of A�

��� Semantics of Branching Datalog

The semantics of Branching Datalog are de�ned in terms of temporal Herbrand interpretations� A
notion that is crucial in the discussion that follows� is that of canonical instance of a clause� which
is formalized below�

De�nition ���� A canonical temporal atom is a temporal atom whose temporal reference is
canonical� An open temporal atom is a temporal atom whose temporal reference is open� A
canonical temporal clause is a temporal clause whose temporal atoms are canonical�

It can be shown that every Branching Datalog program can be transformed into a �possibly
in�nite
 set of canonical temporal clauses� which has the same set of temporal models as the initial
program �see Lemma ��� below
� Therefore� the transformation prererves the set of canonical
atoms that are logical consequences of the program� The construction of this set of canonical
temporal clauses is formalized by the following de�nitions�

�



De�nition ���� A canonical temporal instance of a temporal clause C is a canonical temporal
clause C� which can be obtained by applying the same canonical temporal reference to all open
atoms of C�

The notion of canonical instance of a clause is very important since the truth value of a given
clause in a temporal interpretation� can be expressed in terms of the values of its canonical in�
stances� as the following lemma shows�

Lemma ��� Let C be a clause and I a temporal interpretation of BTL� j�I C if and only if
j�I Ct for all canonical instances Ct of C�

As in Datalog� the set UP generated by constant symbols that appear in P� called Herbrand
universe� is used to de�ne temporal Herbrand interpretations� Temporal Herbrand interpretations
can be regarded as subsets of the temporal Herbrand Base TBP of P� consisting of all ground
canonical temporal atoms whose predicate symbols appear in P and whose arguments are terms in
the Herbrand universe UP of P� A temporal Herbrand model is a temporal Herbrand interpretation�
which is a model of the program�

In analogy with the theory of logic programming� the model intersection property holds for
temporal Herbrand models� The intersection of all temporal Herbrand models denoted by M �P
�
is a temporal Herbrand model� called the least temporal Herbrand model�

The following theorem says that the least temporal Herbrand model consists of all ground
canonical temporal atoms which are logical consequences of P�

Theorem ��� Let P be a Branching Datalog program� Then

M �P
 � fA � TBP j P j� Ag�

A �xpoint characterization of the semantics of Branching Datalog programs is provided using a
closure operator that maps temporal Herbrand interpretations to temporal Herbrand interpreta�
tions�

De�nition ���� Let P be a Branching Datalog program and TBP the temporal Herbrand base
of P� The operator TP � �TBP � �TBP is de�ned as follows�

TP�I
 � fA j A � B�� � � � �Bn is a canonical ground instance of a program clause in P and
fB�� � � � �Bng 
 I g

It can be proved that TBP is a complete lattice under the partial order of set inclusion �

�
Moreover� TP is continuous and hence monotonic over the complete lattice �TBP�

� and therefore
TP has a least �xpoint� The least �xpoint of TP provides a characterization of the minimal
Herbrand model of a Branching Datalog program� as it is shown in the following theorem�

Theorem ��� Let P be a Branching Datalog program� Then

M �P
 � lfp�TP
 � TP � ��

In the following sections we will also use the notation M �P�p
 to denote the set of atoms in
M �P
 whose predicate symbol is p�

� The Transformation Algorithm

In the following we present an algorithm which transforms every simple chain datalog program P
into an equivalent intensional program P� which has the following properties�

�� All predicates in P� are unary�

�� There is at most one atom in the body of each clause in P��

�



The transformation algorithm is as follows�
For each predicate p we introduce two unary predicates p� and p�� where p� corresponds to

the �rst argument of p while p� corresponds to the second argument of p� At various points in
the transformation we use intensional operators of the form calli� Each new such operator that
we introduce is assumed to have a di�erent index i than all previous operators used�

�� Each unit clause �fact
 in P of the form�

p�e�� e�
�

is transformed into a clause in P� of the form�

p��e�
� p��e�
�

�� Each clause in P of the form�
p�X�Y
� q�X�Y
�

is transformed into two clauses in P� of the form�

p��Y
� calli q��Y

calli q��X
� p��X
�

�� Each non unit clause in P of the form�

p�X�Y
� q�X�Z
� r�Z�Y
�

is transformed into the set of clauses�

p��Y
� calli r��Y
�
calli r��Z
� callj q��Z
�
callj q��X
� p��X
�

�� The goal clause�
� p�a�Y


is transformed into the clauses�
� �rst p��Y
�
�rst p��a
�

Example ���� Let P � fI�� I�� I�g � fE�� E�� E�g be a chain Datalog program where�

�I�
 � p�a� Y
�
�I�
 p�X� Z
 � e�X� Z
�
�I�
 p�X� Z
 � p�X� Y
� e�Y� Z
�
�E�
 e�a� b
�
�E�
 e�b� c
�
�E�
 e�c� d
�

The corresponding intensional program P I obtained by applying the transformation algorithm
as follows�

Transforming clause I� we get�

� first p��Y
�
first p��a
�

Transforming I� we get�

�



p��Z
 � call� e��Z
�
call� e��X
 � p��X
�

Transforming I� we get�

p��Z
 � call� e��Z
�
call� e��Y
 � call� p��Y
�
call� p��X
 � p��X
�

Finally� transforming the clauses E� 
E� �corresponding to the EDB atoms
 we get�

e��b
 � e��a
�
e��c
 � e��b
�
e��d
 � e��c
�

� Correctness Proof

Chain Datalog programs can be shown to be equivalent to simple chain Datalog programs� as the
following proposition demonstrates�

Proposition ��� Every chain Datalog program P can be transformed into a simple Datalog pro�
gram Ps such that for every predicate symbol p� it holds M �P�p
 � M �Ps�p
�

Proof� Consider a chain rule in P of the form

p�X�Z
� q��X�Y�
�q��Y��Y�
� � � � �qk���Yk�Z
� ��


where k � �� The rule ��
 can be replaced by the two following rules �in which r is a new predicate
name that we introduce
�

p�X�Z
� q��X�Y�
� r�Y��Z
� ��


r�X�Z
� q��Y��Y�
� � � � �qk���Yk�Z
� ��


Now� clause ��
 has two atoms in its body� while clause ��
 has k �one less than clause ��
 initially
had
� We can apply the same process on clause ��
� and continuing in this way we end�up with a
simple chain Datalog program Ps�

It is easy to see thatM �P�p
 � M �Ps�p
 as the new clauses we introduce can be considered as
Eureka de�nitions while the replacement of q��Y��Y�
� � � � �qk���Yk�Z
 by r�Y��Z
 is a folding
step �TS��� Ger��� GK��
� Now the derired result is an immediate consequence of the correctness
of the fold�unfold transformation system�

Let P be a program and P� the translated intensional one� We show the following lemma�

Lemma ��� Let p be a predicate de�ned in P and let R be a canonical temporal reference� If
R p��a
 � TP� � � and p�a�b
 � TP � � then R p��b
 � TP� � ��

Proof� We show the above by induction on the approximations of TP � ��

Induction Basis�
To establish the induction basis� we need to show that if R p��a
 � TP� � � and p�a�b
 � TP � �
then R p��b
 � TP� � ��

But p�a�b
 � TP � � means that in P there exists a fact p	a�b
 �or a fact p�a�Y
� or a fact
p�X�b
� or p�X�Y

� We consider the case p�a�b
 �the other cases can be examined in a similar

�



way
� According to the transformation algorithm� in P� there exists the rule p��b
 � p��a
�
Using this and the fact that R p��a
 � TP� � � we conclude that R p��b
 � TP� � ��

Induction Hypothesis�
We assume that if R p��a
 � TP� � � and p�a�b
 � TP � k then R p��b
 � TP� � �� Notice that
the induction hypothesis holds for any p in P and any temporal reference R�

Induction Step�
We show that if R p��a
 � TP� � � and p�a�b
 � TP � �k � �
 then R p��b
 � TP� � ��
Case �� Assume that p	a�b
 has been added in TP � �k � �
 using a rule of the form�

p�X�Y
� q�X�Z
� r�Z�Y
 ��


But then� there exists a constant c such that q�a� c
 � TP � k and r�c�b
 � TP � k�
Consider now the transformation of the above clause ��
 in program P�� The new clauses

obtained are�
p��Y
� calli r��Y
� ��

calli r��Z
� callj q��Z
� ��

callj q��X
� p��X
� ��


Using the assumption that R p��a
 � TP� � � together with clause ��
 above� we get that
R callj q��a
 � TP� � �� Given this� we can now apply the induction hypothesis on q which gives�

Since R callj q��a
 � TP� � � and q�a� c
 � TP � k then R callj q��c
 � TP� � ��

Using now the fact that R callj q��c
 � TP� � � together with clause ��
 we get R calli r��c
 �
TP� � �� Given this� we can now apply the induction hypothesis on r which gives�

Since R calli r��c
 � TP� � � and r�c�b
 � TP � k then R calli r��b
 � TP� � ��

Using now the fact that R calli r��b
 � TP� � � together with clause ��
� we get the desired result
which is that R p��b
 � TP� � ��
Case �� Assume that p	a�b
 has been added in TP � �k � �
 using a rule of the form�

p�X�Y
� q�X�Y
 ��


This implies that q�a�b
 � TP � k� Consider now the transformation of the above clause ��
 in
program P�� The new clauses obtained are�

p��Y
� calli q��Y
� ��

calli q��X
� p��X
� ��
�

Using the assumption that R p��a
 � TP� � � together with clause ��
 above� we get that
R calli q��a
 � TP� � �� Given this� we can now apply the induction hypothesis on q which
gives�

Since R calli q��a
 � TP� � � and q�a�b
 � TP � k then R calli q��b
 � TP� � ��

But this together with clause ��
 above gives R p��b
 � TP� � �� which is the desired result�

Lemma ��� Let P be a simple chain Datalog program and �p�a� X	 be a goal clause� Let P� be
the intensional program obtained by applying the tranformation algorithm to P � f� p�a�X
g� If
p�a�b
 � TP � � then �rst p��b
 � TP� � ��

Proof� Since by transforming the goal clause� the fact �rst p��a
 is added to P�� this lemma is
a special case of lemma ����

We now show the following lemma which is the �inverse� of lemma ����

	



Lemma ��� Let p be a predicate de�ned in P and let R be a canonical temporal reference� If
R p��b
 � TP� � � then there exists a constant a such that p�a�b
 � TP � � and R p��a
 � TP� �
��

Proof� We show the above by induction on the approximations of TP� � ��

Induction Basis�
To establish the induction basis� we need to show that If R p��b
 � TP� � � then there exists a
constant a such that p�a�b
 � TP � � and R p��a
 � TP� � ��

But R p��b
 � TP� � � is false because in TP� � � there belong only temporal atoms regarding
input predicates� Therefore� the basis case holds vacously�

Induction Hypothesis�
If R p��b
 � TP� � k then there exists a constant a such that p�a�b
 � TP � � and R p��a
 �
TP� � k�

Induction Step�
We show that if R p��b
 � TP� � �k � �
 then there exists a such that p�a�b
 � TP � � and
R p��a
 � TP� � �k � �
�
Case �� Assume now that there exists in P a rule of the form�

p�X�Y
� q�X�Z
� r�Z�Y
� ��


Consider now the transformation of the above clause ��
 in program P�� The new clauses obtained
are�

p��Y
� calli r��Y
� ��

calli r��Z
� callj q��Z
� ��

callj q��X
� p��X
� ��


Assume also that R p��b
 has been introduced in TP� � �k � �
 by clause ��
 above� Then�
this means that R calli r��b
 � TP� � k� By the induction hypothesis� we get that there exists a
constant c such that r�c�b
 � TP � � and R calli r��c
 � TP� � k�

Notice now that the only way that R calli r��c
 � TP� � k can have been obtained is by using
clause ��
 above �all other clauses de�ning predicate r�� have a di�erent index in the call operator�
Therefore� using clause ��
 above� we then get that R callj q��c
 � TP� � �k 
 �
 which means
that R callj q��c
 � TP� � k� Using the induction hypothesis� we get that there exists a constant
a such that q�a� c
 � TP � � and R callj q��a
 � TP� � k� But then� using clause ��
 above as
before we get R p��a
 � TP� � �k 
 �
� which implies that R p��a
 � TP� � k� Moreover� since
q�a� c
 � TP � � and r�c�b
 � TP � � from ��
 we also get p�a�b
 � TP � �� Using these results
we derive the desired lemma�
Case �� Assume that in P there exists a rule of the form�

p�X�Y
� q�X�Y
 ��


Consider now the transformation of the above clause ��
 in program P�� The new clauses obtained
are�

p��Y
� calli q��Y
� ��

calli q��X
� p��X
� ��
�

Assume also that R p��b
 has been introduced in TP� � �k � �
 by clause ��
 above� Then� this
means that R calli q��b
 � TP� � k� By the induction hypothesis� we get that there exists a
constant a such that R calli q��a
 � TP� � k and q�a�b
 � TP � �� Using clause ��
� we get that
p�a�b
 � TP � ��

Using clause ��
 above together with the fact that R calli q��a
 � TP� � k� we get R p��a
 �
TP� � �k 
 �
� which implies that R p��a
 � TP� � k�
Case 
� Assume that in P there exists a fact of the form�

p�a�b
� ��


�



Consider now the transformation of the above clause ��
 in program P�� The new clause obtained
is�

p��b
� p��a
� ��


Assume now that R p��b
 has been introduced in TP� � �k � �
 by clause ��
 above� This
means that R p��a
 � TP� � k and therefore R p��a
 � TP� � �k��
� Moreover� p�a�b
 � TP � ��
because p�a�b
 is a fact in P�

This concludes the proof of the particular case and of the lemma�

Lemma ��� Let P be a simple chain Datalog program and �p�a� X	 be a goal clause� Let P� be
the intensional program obtained by applying the tranformation algorithm to P � f� p�a�X
g� If
�rst p��b
 � TP� � � then p�a�b
 � TP � ��

Proof� From lemma ��� we have that there is a constant c such that p�c� b
 � TP � � and �rst
p��c
 � TP� � �� But as the only instance of �rst p��X
 in TP� � � is �rst p��a
 then c � a�

Theorem ��� Let P be a simple chain Datalog program and �p�a� X	 be a goal clause� Let P� be
the intensional program obtained by applying the tranformation algorithm P� f� p�a�X
g� Then
�rst p��b
 � TP� � � i� p�a�b
 � TP � ��

Proof� It is an immediate consequence of lemmas ��� and ����

� Conclusions

In this paper� we have developed a transformation algorithm from chain Datalog programs to
Branching Datalog ones� The programs obtained by this transformation have the following inter�
esting properties�

� All predicates are unary

� Every rule has at most one atom in its body

Apart from its theoretical interest� the transformation algorithm can be viewed as an implementa�
tion technique for chain Datalog programs� In fact� the programs that result from the transforma�
tion can be easily executed using appropriate SLD�like proof procedures that have been developed
for temporal logic programming languages �GRP�	� RGP�	

� Such an implementation may use
techniques borrowed from the data�ow area of research �such as tagging� warehousing� etc�
� It re�
mains to be seen whether such an approach can compete with the usual implementation strategies
adopted in the case of Datalog programs�

References

�DG��
 G� Dong and S� Ginsburg� On decompositions of chain datalog programs into P �left�

linear ��rule components� The Journal of Logic Programming� ����
��������� �����

�DW��
 W� Du and W� W� Wadge� The Eductive Implementation of a Three�dimensional Spread�
sheet� Software�Practice and Experience� �����
����	������ November �����

�FW�	
 A� Faustini and W� Wadge� An Eductive Interpreter for the Language pLucid� In Pro�
ceedings of the SIGPLAN �� Conference on Interpreters and Interpretive Techniques
�SIGPLAN Notices ����		� pages ������ ���	�

�Ger��
 M� Gergatsoulis� Logic program transformations� Transformation rules and application
strategies� PhD thesis� Dept� of Computer Science� University of Athens� ����� �In
Greek
�

�



�GK��
 M� Gergatsoulis and M� Katzouraki� Unfold�fold transformations for de�nite clause
programs� In M� Hermenegildo and J� Penjam� editors� Programming Language Imple�
mentation and Logic Programming �PLILP
��	� Proceedings� Lecture Notes in Computer
Science �LNCS
 ���� pages �������� Springer�Verlag� �����

�GRP�	
 M� Gergatsoulis� P� Rondogiannis� and T� Panayiotopoulos� Proof procedures for
branching�time logic programs� In W� W� Wadge� editor� Proc� of the Tenth Interna�
tional Symposium on Languages for Intensional Programming �ISLIP
��	� May ������
Victoria BC� Canada� pages ������ ���	�

�Jon�	
 S� L� Peyton Jones� The Implementation of Functional Programming Languages� Prentice�
Hall� ���	�

�Org��
 M� A� Orgun� Intensional logic programming� PhD thesis� Dept� of Computer Science�
University of Victoria� Canada� December �����

�OW��
 M� A� Orgun and W� W� Wadge� Towards a uni�ed theory of intensional logic program�
ming� The Journal of Logic Programming� ����
��������� �����

�RF��
 D� Rolston and T� Faustini� An Overview of an Eductive Evaluation Mechanism for Logic
Programs� In Proceedings of the Sixth International Symposium on Lucid and Intensional
Programming� pages ������	� �����

�RGP�	
 P� Rondogiannis� M� Gergatsoulis� and T� Panayiotopoulos� Cactus� A branching�time
logic programming language� In D� Gabbay� R� Kruse� A� Nonnengart� and H� J� Ohlbach�
editors� Proc� of the First International Joint Conference on Qualitative and Quantitative
Practical Reasoning� ECSQARU�FAPR
��� Bad Honnef� Germany� Lecture Notes in
Arti�cial Intelligence �LNAI
 ����� pages �������� Springer� June ���	�

�Ron��
 P� Rondogiannis� Higher�order functional languages and intensional logic� PhD thesis�
Dept� of Computer Science� University of Victoria� Canada� December �����

�RW�	
 P� Rondogiannis and W� W� Wadge� First�order functional languages and intensional
logic� Journal of Functional Programming� 	��
�	������ ���	�

�TS��
 H� Tamaki and T� Sato� Unfold�fold transformations of logic programs� In Sten��Ake
Tarnlund� editor� Proc� of the Second International Conference on Logic Programming�
pages ��	����� �����

�Wad��
 W� W� Wadge� Tense logic programming� A respectable alternative� In Proc� of the ����
International Symposium on Lucid and Intensional Programming� pages ������ �����

�Wad��
 W� W� Wadge� Higher�Order Lucid� In Proceedings of the Fourth International Sympo�
sium on Lucid and Intensional Programming� �����

�Yag��
 A� Yaghi� The intensional implementation technique for functional languages� PhD thesis�
Dept� of Computer Science� University of Warwick� Coventry� UK� �����

��


