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Abstract

Numerical Processing is an application area for computer programming with great interest.

For this reason features as �t in parallel logic programming that make numerical processing

more e�cient and easier are described and proposals concerning their introduction in ElipSys

are presented.

We also discuss the real-time programming issues and the language support that should

be provided for building real-time applications. New language constructs and primitives are

proposed for this reason and then we examine the use of parallelism that ElipSys o�ers from

the real-time support point of view.

1 Introduction

In the following, we are going to present part of our contribution to the ESPRIT Project

EP2025, European Declarative System (EDS). The project's duration is 4 years (1989-1992)

and it is a collaboration between BULL (France), ICL (UK), SIEMENS (Germany) and

ECRC (Europe). A number of other European companies and universities are also involved,

including the Athens University as an associate partner of ECRC. The target of the EDS

project is to design and implement both the hardware and the software for a parallel infor-

mation server. The EDS machine is a message passing multiprocessor with distributed store.

It consists of 4 to 256 Processing Elements (PEs), each one containing 64M to 2G bytes of

memory. Three declarative programming paradigms are supported, namely database, Lisp

and logic programming. ElipSys [BCDR+89, BCDR+90, DRSX90] is the parallel logic pro-

gramming subsystem that aims at the development of complex applications. OR-parallelism,

data-parallelism, data driven computation, constraint satisfaction through �nite domains and
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an interface to the EDS database server are some of the main characteristics of the ElipSys

language.

The �eld of numerical processing is an important one in computer science. For this

reason, when we study a programming language, we often examine if the language provides

the necessary features for supporting numerical applications. In Prolog, little emphasis has

been given to features related to numerical processing. This is due to the fact that Prolog

was designed to be a programming language for Arti�cial Intelligence applications. But if

we want to use Prolog as a general purpose language, we have also to examine the features

that Prolog provides for numerical applications programming.

In a parallel Prolog system, we have also to examine how we can exploit parallelism in

programs that perform numerical processing in order to speed up their execution.

Algorithms can be described declaratively using Prolog, but it is ine�cient to represent

data of real numerical problems using lists.

In this paper, we present some of the results concerning the proposed ElipSys extensions

which are related to numerical processing. We propose three approaches, di�erent in na-

ture.Firstly, an extension of ElipSys data parallelism, secondly,the incorporation of global

variables and arrays in ElipSys and thirdly, an interface between ElipSys and C.

One of the most interesting and challenging application areas of computer systems reside

in real-time domains. Many of real-time applications require also logic programming tech-

niques for e�cient implementation, e.g. real-time expert systems. Thus, there is a need to

extend a logic programming system with new constructs to support the expression of timing

constraints and other real-time features.

A di�cult problem that arises in the real-time applications is the program veri�cation.

Formal methods are di�cult to be found to ensure that the timing requirements are met and

to predict the worst case execution time of the tasks.

Real-time applications are suitable to be coded in a parallel programming language due

to the fact that we can divide a real-time application into several cooperating tasks which

can run concurrently.

In this paper we also describe the extensions proposed for ElipSys in order to support the

implementation of real-time applications. We will also examine the use of the parallelism that

ElipSys o�ers in the above real-time extensions and the usefulness of a parallel environment

in real-time programming.

2 Numerical Processing

2.1 Characteristics of Numerical Problems

Numerical problems have particular characteristics and demand extended facilities in order

to be dealed with e�ciently by Prolog. Some of these characteristics and demands are

discussed in brief in this paragraph.

In most numerical problems there is a need for the representation and use of a large

amount of numerical data (e.g. vectors, matrices). In procedural languages, these data are

usually represented as arrays. In Prolog we have two choices. The �rst one is to use lists.

This is the classical Prolog method. The second is to incorporate in Prolog facilities for

de�ning and using global arrays and data [Sep, Vax]. This approach is similar to that used

in procedural languages.
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A problem related to data representation comes from the lack of destructive assignment to

Prolog variables. This leads to the need for a large amount of space even for small numerical

problems. The incorporation of global data in Prolog, which permit destructive assignment,

is also a solution to this problem.

Another charecteristic of numerical problems is that they are deterministic. This means

that backtracking is not used to �nd possible alternative solutions. This observation poses

some questions about the suitability of Prolog, which is a non-deterministic language, to solve

numerical problems. Another question concerns the possible usefulness of OR-parallelism,

which is the main parallelism of ElipSys, in programs that solve numerical problems. We

have to note here that OR-parallelism is mainly used to �nd all alternative answers to a

query, in parallel.

An important observation is that in numerical problems we have frequently to perform

the same operation on a large amount of data. In this paper, we try to �nd ways to exploit

this kind of parallelism.

The constructs that we examine in the following are related to three di�erent approaches

for solving numerical problems in Prolog.

1. The �rst one is based on the use of lists to represent the problems' data. Using this

approach we believe that data parallelism with some extensions may be proved useful.

2. The second is based on the use of global variables and arrays for the representation of

data. Constructs for e�cient manipulation of them are also proposed.

3. The third approach is based on cooperation of Prolog with a procedural language (C).

2.2 Data parallelism extensions

In most numerical problems there is a need to perform the same operation on a set of data.

For example, we often have to compute the vector sum of two vectors, to multiply a vector

by a number, or to perform the same operation on all the rows of a matrix. Such operations

could be carried out in all elements of a set in parallel since processing one element is

usually independent from the processing of the other elements of the set. In a sequential

Prolog system these operations are usually expressed through recursive Prolog procedures.

In program 1 we can see a typical example of these operations through an algorithm that

transforms a matrix into triangular. Matrices are represented as lists of lists.

Program 1

/* triangle(M,T) <-- T is the triangular matrix that is produced from M */

triangle([],[]).

triangle(A,[F|TA]) :- first_row(A,F,Rest), proc_rows(F,Rest,NewRest),

triangle(NewRest,TA).

/* first_row(M,F,R) <-- F is the first row of matrix M which

has its first element different than zero */

first_row([[C|Cs]|A],[C|Cs],A) :- C=\=0.

first_row([[0|Cs]|A],F,[[0|Cs]|R]) :- first_row(A,F,R).
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/* proc_rows(F,M,Nm)<--turns to 0 the first column of matrix M giving Nm */

proc_rows(_,[],[]).

proc_rows(Fl,[L|Rest],[NewL|Ls]) :- procc_row(Fl,L,NewL),

proc_rows(Fl,Rest,Ls).

procc_row([C|Cs],[Ci|Cis],L) :- M is -Ci/C, product_num_vector(M,Cs,Lc),

vector_sum(Lc,Cis,L).

/* vector sum */

vector_sum([],[],[]).

vector_sum([A|As],[B|Bs],[C|Cs]) :- C is A+B, vector_sum(As,Bs,Cs).

/* multiplies all the elements of a vector by a number */

product_num_vector(M,[],[]).

product_num_vector(M,[X|Xs],[Y|Ys]) :- Y is M*X,

product_num_vector(M,Xs,Ys).

The processing of each row may be done independently and in parallel with the processing

of the other rows. The same holds for the elements of vectors in vector operations. Our

attempt was to express this kind of parallelism in the ElipSys. In this direction, we propose

the following extensions for data-parallelism [Heu89] and all-solution primitives.

� An extension to all solution primitives in order to guarantee the order of solutions.

� A new built-in data-parallelism predicate cor elements=4 which has the same declar-

ative semantics as:

cor_elements(X,Y,[X|Xs],[Y|Ys]).

cor_elements(X,Y,[X1|Xs],[Y1|Ys]) :- cor_elements(X,Y,Xs,Ys).

This built-in generates pairs of X and Y of the corresponding list elements. A single

branche point with N branches (where N is the number of list elements) is created.

Using the ElipSys data-parallelism with the proposed extensions, we obtain Program 2.

In Program 2 the procedure proc rows of Program 1 has been replaced by the call

findall(NL,(par_member(L,Rest),procc_row(F,L,NL),NewRest)

In addition, the procedures vector sum and product num vector have been replaced by par-

allel versions. The necessity of the proposed extensions in order to guarantee the correctness

of the computations, is obvious.

The search tree that corresponds to Program 2 is shown in Figure 1.

Program 2
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Figure 1: Search-\tree" for program 2

triangle([],[]).

triangle(A,[F|TA]) :- first_row(A,F,Rest),

findall(NL,(par_member(L,Rest),procc_row(F,L,NL)),NewRest),

triangle(NewRest,TA).

vector_sum(A,B,C) :- findall(Z,(cor_elements(X,Y,A,B), Z is X+Y), C).

product_num_vector(M,A,B) :- findall(Z,(par_member(X,A),Z is M*X), B).

2.3 Global data and Arrays in ElipSys

The second approach that we examine is to represent matrices using global arrays. To achieve

this, we have to extend ElipSys to support the de�nition of global data and constructs for

e�cient use of them. The extensions that we propose are the following:

� Global data de�nition built-in predicates

{ array def(Name,Dimension size,Type): De�nes a global array with name

the atom Name and elements of type Type. The dimension and the size of the

array is de�ned in list Dimension Size.

{ var def(Name,Type): Atom Name is a global variable of type Type.

� Global data manipulation built-in functions

{ val(Namef,Positiong): Returns the value of a global variable / array element
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{ newval(Namef,Positiong) It is used only as a left hand side argument of the

is built-in. It assigns (destructive assignment) the value of the expression of the

right hand side of is, to the global variable / array element determined by Name

and Position. It is possible to mix logical and global variables in expressions.

� Control structures (built-in procedures)

{ proc iter(Index var,Initial val,Final val,Step,Goal) Where Index var is

an uninstantiated variable, Initial val, Final val and Step are integers, Goal is

a Prolog goal. Goal is repeatedly called for all di�erent values of Index var.

{ par proc iter(Index var,Initial val,Final val,Step,Goal) It is the same as

proc iter=5 except that all goals are executed in parallel.

{ proc until(Goal,Test) Where Goal, Test are Prolog goals. Goal is repeatedly

called until Test is true. This built-in procedure must be used in conjunction

with global variables. This is the only way for Test to succeed in some iteration.

An implementation of the matrix triangulation algorithm that we have previously pre-

sented, using global arrays and the proposed built-ins is presented in Program 3.

Program 3

:- array_def(a,[300,301],float).

:- array_def(buffer,[301],float).

:- var_def(row,short).

/* triangle(M, N) <-- makes triangular the matrix M which has N rows */

triangle(A,N) :- proc_iter(I,0,N,1,procc_rows(A,N,I)).

procc_rows(A,N,I) :- oneof(first_row(A,N,I)), J is I+1,

par_proc_iter(K,J,N,1,procc_row(A,N,K,I)).

first_row(A,N,I) :- val(A,[I,I])=\=0.

first_row(A,N,I) :- newval(row) is I, proc_until(incr(row),test(A,row)),

W is val(row), swap(A,N,I,W).

incr(L) :- newval(L) is val(L)+1.

test(A,L) :- val(A,[val(L),val(L)])=\=0.

/* swap(A,N,I,J) <-- swaps all elements of rows I and J of matrix A */

swap(A,N,I,J) :- par_proc_iter(M,I,N,swap_elem(A,M,I,J)).

swap_elem(A,M,I,L) :- newval(buffer,[M]) is val(A,[I,M]),

newval(A,[I,M]) is val(A,[L,M]),

newval(A,[L,M]) is val(buffer,[M]).
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procc_row(A,N,K,I) :- Num is -val(A,[K,I])/val(A,[I,I]), N1 is N+1,

par_proc_iter(J,I,N1,1,proc_elem(Num,A,I,K,J)).

proc_elem(Num,A,I,K,J) :- newval(A,[J,K]) is val(A,[J,K])+Num*val(A,[I,K]).

Introduction of global arrays and data in a parallel Prolog system is more complex than

in a sequential one. This is due to the problem of sharing them and controlling their updates.

In sequential Prolog systems the usefulness of global data often relies on the user's knowledge

of the sequence of the modi�cations of the values of global data. The problem arises when

global data in a parallel environment are shared between parallel processes which explore

di�erent OR-brances of a procedure. Then, the sequence of modi�cations of the values of

these data is not known at the time of writing the program (as it is the case in a sequential

Prolog). However, in some cases this is not a problem. As an example, we can mention the

use of a parallel procedure to manipulate di�erent sections of a global array, which is the

case in the matrix triangulation algorithm of program 3. Another one is the storage of the

results of some processes in a global stack, the order of results being of no interest to us.

For cases in which the order of access of global data from di�erent OR-processes is

signi�cant we propose a mechanism which ensures this order. This mechanism is presented

through an example which shows the use of global data for communication between OR-

processes.

The inability of independent parallel processes to communicate with each other has been

recognized as a problem of PEPSys [RR86] and an attempt [Rat88] was made to solve the

problem using the assert/retract mechanism. The example that we present was given in

[Rat88]. The problem is to �nd the path connecting two points of a graph, which has the

minimum cost. If a number of processes explore each possible path of the graph in parallel,

then, when a process �nds a solution with cost C, all the other processes which in that time

have found a part of a path with cost greater than C, is better to stop their work. For this

purpose a process communication mechanism is needed. The program of path �nding is the

following.

:-var_def(cost,short).

:-parallel advance/4.

advance(EndNode,EndNode,[],PathCost) :- update_cost(PathCost).

advance(Node,EndNode,[NextNode|Path],PartialCost) :-

new_node(Node,NextNode,Cost),

NewPartialCost is PartialCost + Cost,

check_cost(NewPartialCost),

advance(NextNode,EndNode,Path,NewPartialCost).

update_cost(PathCost) :- wait(sem),

C is val(cost), C > PathCost, !,

newval(cost) is PathCost,

signal(sem).

update_cost(_) :- signal(sem).

check_cost(Cost) :- C is val(cost), Cost < C.
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In procedure update cost we use the semaphore facility and the two built-in predicates

wait=1 and signal=1 (see paragraph 3.1) to forbid access to a global variable while the process

of updating takes place. If we do not use this mechanism it is possible that the following

situation appears: A process P1 �nds a solution with cost 200 and calls the procedure

update cost. Let's suppose that the current value of the cost is 340. P1 gets the current

cost and compares it with 200. P1 �nds that the cost that has found is less than the current

value of cost and decides to update cost. Before that, however, another process P2 �nds a

solution with cost 250. P2 calls update cost which gets the current cost value 340. At that

time P1 updates the global variable cost with the value 200. P2 compares the value of cost

(340 > 250) and decides to update cost which �nally takes the value 250.

Except for these applications, we believe [HKK+90] that global data and arrays may be

proved to be useful also to restrict the need of assert/retract and to transform some kinds of

AND-parallelism to OR-paralellism (storing the results of processing in global variables and

collecting them after the OR-processes have �nished execution. We also provide the system

with the facility to pass global data to C functions.

2.4 ElipSys-C Interface

2.4.1 The need for the interface and its desirable characteristics

Most of the existing Prolog systems [Qui, BIM, C, Sep, Tur] provide the user with tools to

load and call programs written in a procedural language such as C, Fortran, Pascal, Basic,

Cobol, PL/1 and Assembly.

An interface to a foreign language from Prolog may be desirable for several reasons,

such as to speed up certain critical operations, to communicate with the operating system

and other programs, to combine Prolog with existing programs and libraries, to implement

algorithms that may be expressed easily in another language and to control the work done

by a procedural language through Prolog.

The key point in communication between Prolog and procedural languages is the data

passing from the one language to the other. The main problem in this communication comes

from the incompatibility between the data types of Prolog and the ones of the procedural

language.

In the ElipSys to C interface that we propose we took into consideration the following

desirable characteristics:

� It must be independent of the speci�c hardware and must provide compatibility with

later ElipSys versions.

� The user does not need to know anything about implementation details or the ElipSys

data representation.

� The interface is low level enough, so as to give the user the ability to implement his/her

own built-in procedures.

� The interface is general enough to permit passing and returning all ElipSys data types

to and from C.

� It permits calling of existing C library functions without a lot of extra C code.

� The interface should be e�cient and not space consuming.
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� It should be user friendly.

2.4.2 The ElipSys to C Interface

The ElipSys to C interface allows the user to link an ElipSys predicate with a C function.

It also permits the de�nition of new ElipSys evaluable functions through C functions. At

present, the external predicates are deterministic. In the future, we will examine the possi-

bility to support non-deterministic predicates as well.

In the ElipSys to C interface we concentrate on passing and use of all ElipSys data to the

C function. This includes logical terms as well as global data that we propose to be included

in the ElipSys language.

The interface supports the passing and automatic transformation of all atomic ElipSys

data types to the corresponding C data types providing user frendliness. This mapping is

carried out according to some transformation rules which are similar to the ones used by the

interface of Quintus Prolog [Qui] and BIM Prolog [BIM] with procedural languages.

The way of passing of general ElipSys terms and their use through functions that the

system provides is similar to these of BIM Prolog.

For global data supported by the ElipSys, we propose to have the same internal repre-

sentation as in C. So, in order to pass a global variable or a global array to the C function,

just a pointer to the global variable or to the �rst element of the global array is needed.

2.4.3 Argument Passing

Information is supplied to the interface through two built-in predicates external predicate=2

and external function=3 which correspond to external predicates and functions respectively.

These predicates are of the form:

: �external predicate(hc namei; hprolog namei[(hp arg speci; hp arg speci; : : :)]):

and

: �external function(hc namei; hprolog namei[(hf arg speci; hf arg speci; : : :)]; htypei):

The harg speci must be of a form that is de�ned as follows:

hp arg speci ::= (hkindi,htypei,hmodei) j (hkindi,htypei) j (hkindi)

hf arg speci ::= (hkindi,htypei) j (hkindi)

htypei ::= short j long j oat j double j atom j string

The information needed for argument passing concerns three di�erent attributes:

� The kind of the argument. The attribute hkindi may have one of the following values:

cv term (convertible term) If the argument is an ElipSys term which will be auto-

matically converted by the interface to a corresponding C term

gl var (global variable) If the argument is a global variable

gl array (global array) If the argument is a global array
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gp term (general Prolog term) If it is an ElipSys term which will not be converted by

the interface, but a pointer to it will be passed to the C function so that the latter

manipulate it through a prede�ned set of functions that the interface provides

� The type of the argument value. htypei provides the interface with information about

the C data type which the argument has to be mapped into by the interface.

� The mode of the argument, that is,

i (input mode) If ElipSys sends a value to the C function

o (output mode) If ElipSys receives a value from the C function through this argument

r (return mode) If ElipSys receives a value through the C function's return value

Data passing is based on the following general rules.

� For convertible terms (hkindi = cv term): If the mode is i (input) then the arguments

are passed by value (except for strings, that a pointer to a string is passed). If the

mode is o (output) a location of the declared type is created by the interface and a

pointer to it is passed to the C function. The C function is expected to store in this

place a value. On return to ElipSys the interface converts this value to a corresponding

ElipSys term and uni�es it with the corresponding argument of the ElipSys goal. For

r (return mode) no argument is passed to the C function but the value that the C

function returns is uni�ed with the corresponding argument of the ElipSys goal.

� For global variables (hkindi = gl var), a pointer to the location in which the data are

stored is passed to C function. The C function may read or update this location.

� For global arrays (hkindi = gl array), a pointer to the location of the �rst element of

the array is passed to the C function. The C function may read or update the elements

of this array.

� For general Prolog terms (hkindi = gp term) a pointer to the ElipSys area that the

term is stored is passed to the C function. The C function may read or further instan-

tiate this term or create a new term using a set of functions that the interface provides

for this reason.

In the case of atoms in output mode, a pointer to an unsigned long integer is passed to the

C function. It is assumed that the C function will overwrite this integer with the internal

representation of an atom. The ElipSys to C interface provides functions for translation

between internal and string representation of an atom.

As an example, let us suppose that we have a C function c gauss implementating the

Gauss elimination algorithm.

/* a:the problem matrix, sol: the solution vector, n:number of equations*/

c_gauss(a,n,sol)

float a[300][301],sol[300];

short n;

{ ... }

This function may be called from ElipSys passing pointers to arrays:
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:- external_predicate(c_gauss,gauss((gl_array,float), (cv_term,short,i),

(gl_array,float)).

:- array_def(a,[300,301],float).

:- array_def(sol,[300],float).

:- gauss(a,300,sol). /* after that call sol contains the solution */

Another possibility is to synchronize the execution of several C functions which solve

subparts of the problem through an ElipSys program and control the parallelism.

In Program 4 three C functions are presented, which perform subtasks of the whole

algorithm. Then the Program 5 is responsible to control the execution of the function using

the primitives that we have described in section 2.3.

vskip 0.5in Program 4

/* processing a single row in order to make matrix triangular */

c_proc_row(a,n,i,j)

short n,i,j;

float a[300][301];

{ .... }

/* computes solutions linear system using its triangular matrix */

c_compute_solutions(a,n,sol)

short n;

float a[300][301],sol[300];

{ .... }

/* gets the first row of the matrix with non zero value

in a specific cell */

c_first_row(a,n,i)

short n,i;

float a[300][301];

{ .... }

Program 5

:- external_predicate(c_proc_row,c_proc_row((gl_array,float),

(cv_term,short,i),(cv_term,short,o),(cv_term,short,o)).

:- external_predicate(c_compute_solutions,

c_compute_solutions((gl_array,float),

(cv_term,short,i), (gl_array,float)).

:- external_predicate(c_first_row,c_first_row((gl_array,float),

(cv_term,short,i), (cv_term,short,o)).

:- array_def(a,[300,301],float).

:- array_def(sol,[300],float).

:- var_def(row,integer).

/* gauss(A,N,Sol)<--A:problem matrix with N columns, Sol:solution vector */

gauss(A,N,Sol) :- triangle(A,N), c_compute_solutions(A,N,Sol).
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triangle(A,N) :- proc_iter(I,1,N,procc_rows(A,N,I)).

procc_rows(A,N,I) :- c_first_row(A,N,I), K is I+1,

par_proc_iter(J,K,N,c_proc_row(A,N,I,J)).

3 Real-Time Processing

A Real-Time (RT) system is one which, given an arbitrary input (or event) and an arbitrary

state of the system, then the system always produces a response by the time it is needed. This

�xed time that has elapsed until the response is provided, is de�ned in the problem statement

[LCSK88]. Tus, one of the main characteristics of a RT system is that the correctness of the

system depends not only on the logical results of the computation but also on the time at

which the results are provided [Sta88].

The application area of RT systems is very wide and interesting, ranging from small

applications like simple controllers, to large and complex systems for industrial and military

purposes. The most common applications reside in the area of control of sophisticated

equipments like ight control systems, automobile engines, nuclear power stations, robotics,

vision systems, systems found in intelligent manufacturing, the space station, aerospace,

�nancial advice and medicine (patient monitoring).

Many of the applications have been implemented in low level languages (LLL) as often

as in high level languages (HLL). The implementation of a system in a low level language

o�ers some advantages such as the direct control of the external devices connected with

the computer, interrupt handling services , high execution speed and e�cient use of mem-

ory. However, this also presents the well-known disadvantages of the LLL, which make the

implementation of a RT application extremely di�cult.

The implementation of a RT application in a HLL is easier and faster but arises other

problems such as the di�culties in handling the devices, interrupts and time. As Prolog is a

HLL designed for non-RT applications we have to enrich it with many constructs to support

the expression of:

� Task manipulation

� Timing constraints

� Communication and synchronization between parallel processes

� Interrupt handling mechanism

� Exception handling mechanism

Although in this section we discuss RT programming issues and the language support

that should be provided for handling RT applications we also have to notice the importance

of the Operating System (OS) in the whole implementation of a RT system. Most of the

commands and primitives of the HLL related to process creation, communication between

processes, time handling and interrupt processing have to be translated into the correspond-

ing system calls which �nally manipulate these low level functions. Thus, the OS should

provide basic support for guaranteeing real-time constraints, process manipulation, control

over the interrupts, multitasking capability, control over tasks and a complete real-time clock

facility to ensure the correct manipulation of the timing requirements [LM88].
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3.1 Extensions proposed for ElipSys

We �rst consider that a RT application is more suitable to be implemented in the form of a

set of concurrent tasks in which the timing requirements and the inter-task communication

and synchronization are de�ned. Thus, we �rstly have to de�ne what a task means in the

ElipSys and then to show the mechanisms for task manipulation, concurrent execution and

time handling.

We de�ne as a RT task in ElipSys an independent execution unit that consists of a set of

clauses, data associated with it, and timing constraints that determine the execution time

of the task. Each task has a priority and can exchange information through a well de�ned

communication mechanism.

A RT task is generated through a call of the built-in predicate gentask=5 which has the

form:

gentask(Tname; Starttime;Duration; Priority;Goal)

where

Tname is a descriptor which identi�es the new task and can be used to control its behaviour.

Tname is unique for each task.

Starttime is an ElipSys term which determines the start of execution and the period of the

task. The term can be of the form

start(and(Abs time;Event tree); P eriod)

or

start(or(Abs time;Event tree); P eriod)

As shown in the description of the above terms, the starting time may depend either

on absolute time or on a sequence of events or on a combination of both. Events are

used for synchronous communication between tasks and are described more precisely

in the following paragraphs. Here we see that an event can also cause the execution of

a task. Morover the period of the task may be de�ned if we have a periodic task.

Duration is an ElipSys term which determines the duration of the task and an exception

handler. The term is of the form

duration(Abs time; T ime dur;Except goal)

The duration is de�ned either in absolute time (Abs time) or giving a time interval

(T ime dur). The Except goal is a goal that is executed after a violation of the time

constraint.

Priority is the priority of the task

Goal is the goal that the task calls and constitutes the task code.

Other built-in predicates for task manipulation are:

1. priority(Tname; Priority): This call changes the priority of the task Tname.

2. suspend(Tname): This call suspends the execution of the task Tname. It can be

restarted by the call resume(Tname).
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3. kill(Tname): It stops the execution of the task Tname.

In addition, some new constructs are used for time manipulation. For example we may

wish to delay a task for a time interval or read the time from the system's real-time clock.

The predicates proposed for this reason are:

1. duration(Tname;Duration): This predicate changes the previous time expression of

the task Tname and thus changes the time limit by which the task must be �nished.

2. delay(Tname;N): It delays the execution of the task Tname N time units.

3. delay(N): It delays the execution of the calling task N time units.

4. wait(Tname list): It causes the calling task to wait until all the tasks in Tname list

have �nished execution.

5. time(Hours;Min; Sec;Hundredths): It instantiates Hours; Min; Sec; Hundredths

with the system's RT clock.

6. date(Y;M;D): It instantiates Y;M;D with the year, month and day of the current

date.

All the above predicates are not backtrackable. In this way, when the program backtracks

to one of these predicates as gentask=5, it is the user's responsibility to call the prediate

kill(Tname) if the Tname is not needed any more.

Now we will describe some mechanisms and primitives that are needed for the inter-task

communication and synchronization in ElipSys.

A simple synchronization mechanism that can be used is the semaphore variable. A

semaphore can be created with the call create sem(S), and can be accessed with the calls

wait(S) and signal(S).

wait(S)

implements the operation: if S > 0, then S = S�1, else suspend the execution of the calling

task.

signal(S)

implements the operation: if any task has been suspended after performing a wait call on

this semaphore, then move it to ready state, else S = S + 1.

Another mechanism used for communication and synchronization between di�erent Elip-

Sys tasks is the binary event mechanism with the same semantics as in Delta Prolog [PN84].

There are two predicates

create event(Event name;Event i



Cond is a predicate condition (goal statement).

These predicates handle the events as described below:

A goal

create event(E;S; SC)

solves only when some complementary goal

wait for event(E;R;RC)

is also reached in some other process, S uni�es with R, and then SC and RC evaluate both to

true. The same holds for wait for event(E;R;RC) with respect to create event(E;S; SC).

Apart from the synchronization feature, it's the same as if each of the two event goals was

replaced by (S = R;RC;SC) where the clauses for RC and SC are de�ned in di�erent

processes.

While a complementary goal has not been reached, either type of event goal hangs.

When both complementary goals are reached, but S does not match R or one of SC or RC

fails, then wait for event(E;R;RC) fails and create event(E;S; SC) hangs waiting for a

complementary goal to be reached again. The above is necessary to guarantee completeness

of search, as the one process hangs while the other backtracks to explore alternatives.

As shown in the above, synchronization relies on the fact that an event goal must be

reduced simultaneously with a complementary event goal. Communication is the outcome

of the uni�cation of the Event info patterns.

A last mechanism that can be used for task communication is by global variables. We

can use two operations on a global variable: setting the variable with a value and getting the

value from the variable that is currently associated with it. These operations can be carried

out by the predicates introduced in paragraph 2.3. Communication is achieved having one

task assigning a value to a global variable and all the other tasks reading this value. In this

case a synchronization mechanism has to be used to ensure the correct writing and reading

of the global variables.

As we previously mentioned, one of the features that a RT language has to provide, is the

interrupt handling mechanism, that allows interrupt handlers de�nition. In the following we

describe a mechanism like the one that Sepia uses for interrupt handling [Sep]. The predicates

that we propose are:

1. def interrupt handler(N;Goal) that assigns the goal speci�ed byGoal as the interrupt

handler for the interrupt identi�ed by N . N is an operating system interrupt identi�er,

and thus, the de�nition of interrupt handler is OS dependent.

2. find interrupt handler(N;PredSpec) may be used to �nd the current interrupt han-

dler for an interrupt N .

3. interrupt(N) The interrupt with number N is issued

4. disable interrupt(N) disables interrupt with number N

5. disable interrupts disables all interrupts

6. enable interrupt(N) enables the previously disabled interrupt N

7. enable interrupts enables all previously disabled interrupts

15



When an interrupt occurs, the system stops what it is currently doing, calls the interrupt

handler and when the handler exits, the execution is resumed at the point where it was

interrrupted.

3.2 Parallelism and Real Time extensions

As far as parallelism is concerned, we can say that Real Time applications have determin-

istic behaviour and require concurrent execution of many tasks. Thus, parallelism can be

presented when we create a new task using gentask=5 predicate and we want this task to be

executed in parallel with the already executing ones. OR-parallelism and Data-parallelism

that ElipSys o�ers, can be used inside the body of every task.

Every time that the predicate gentask=5 is called, the OS receives a system call which

creates a new task that is concurrently beeing executed with the original one. When a task

creates an event by the call create event=3 or asks for an event by the call wait for event=3

then a message is sent to the scheduler program (which is part of the OS) by a system

call. The scheduler also receives interrupt requests from the computer's interrupt system

and maintains lists of Ready, Suspended and Dormant tasks [LM88]. For example when a

task asks for an event or requests a system resource which is unavailable, then the scheduler

places this task in the suspended list and selects another task (if there is any) to be executed.

A task which is waiting for an event to occur or a resource to become available is not being

executed and therefore does not take up any CPU time. When the event occurs or the

resource becomes available the scheduler allows the task to continue execution.

4 Implementation Issues

As far as the numerical processing is concerned, we have to mention that some of the proposed

extensions like those for data parellelism may be implemented either as part of the ElipSys

itself or as library procedures. On the other hand, global data and interface to C must

be included in the languge. In the case of the interface, it may be provided a lower level

one upon which the more user friendly interface that we propose may be implemented. At

present, we have implemented global data and part of the proposed interface in a sequential

Prolog which has been developed at NRCPS Democritos [GK88] for experimental use.

As far as the RT extensions are concerned, we have to mention the strong dependencies

that exist between the proposed RT constructs and the operating system of the EDS machine.

The system supports the PCL, which is an interface between the language execution model

and the kernel and is used for the e�cient managment of the computing resources and

the underlying hardware. The PCL provides primitives for process managment, interprocess

communication, synchronization and shared data. Thus, most of the RT language constructs

can be implemented using the corresponding PCL primitives. For example we can use PCL

primitives like create port(), connect sender to port(), async send to port() to implement

the proposed event communication mechanism. In addition, there is the need to enrich the

set of primitives of PCL with new primitives that manipulate time such as time-depended

process managment and periodic process creation.

Moreover, ElipSys uses an object-oriented approach in order to solve synchronization

problems caused by predicates with side-e�ects under parallel execution. For any set of

concurrent instructions that perform changes to a global memory or device, a managing
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process to handle the needed synchronization is created. So many RT constructs can bene�t

from this ElipSys feature and solve the synchronization problems that arise.

Taking into consideration the features of PCL and ElipSys, the RT constructs can be

implemented quite easily and used e�ciently.

5 Conclusions

In this paper we examine the possibility to use ElipSys language for numerical processing.

Towards this, we propose some ElipSys extensions which we beleive that make numerical

processing in the ElipSys easier and more e�cient. Three di�erent approaches are presented.

The �rst one is an extension of data parallelism and all solution primitives. This extension

can be useful in a wider area of applications and facilitates the expression of vector operations.

The second incorporates global variables and arrays in the ElipSys as well as constructs for

e�cient use of them. Except for numerical processing, global variables may also be useful

in inter-process communication. The third extension concerns the communication between

ElipSys and C. The interface that we propose is designed so as to pass all ElipSys terms,

including global data, to C.

In addition, in this paper, we have proposed a set of RT extensions of ElipSys, in order

to support explicit timing constraints, periodic task creation, interrupt handling, communi-

cation and synchronization mechanisms. ElipSys extented with these features will be able

to be used for the implementation of many applications of RT domains which require knowl-

edge based techniques that Logic Programming o�ers. Thus the required intelligence can be

added to the RT domains.
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