
Answering Queries Using Materialized Views

with Disjunctions� ��

Foto N� Afrati�� Manolis Gergatsoulis�� and Theodoros Kavalieros�

� Dept� of Electrical and Computer Engineering�
National Technical University of Athens�

��� �� Athens� Greece�
fafrati�kavalierg�softlab�ece�ntua�gr

� Inst� of Informatics � Telecom��
N�C�S�R� �Demokritos��

��� �	 A� Paraskevi Attikis� Greece
manolis�iit�demokritos�gr

Abstract� We consider the problem of answering datalog queries using
materialized views� More speci
cally� queries are rewritten to refer to
views instead of the base relations over which the queries were originally
written� Much work has been done on program rewriting that produces
an equivalent query� In the context of information integration� though�
the importance of using views to infer as many answers as possible has
been pointed out� Formally� the problem is� Given a datalog program P
is there a datalog program Pv which uses only views as EDB predicates
and �i
 produces a subset of the answers that P produces and �ii
 any
other program P �

v over the views with property �i
 is contained in Pv�
In this paper we investigate the problem in the case of disjunctive view
de
nitions�

� Introduction

A considerable amount of recent work has focused on using materialized views
to answer queries ��� �� �� ��� ��� ��� 	
� This issue may arise in several situa�
tions� e�g�� if the relations mentioned in the query are not actually stored or are
impossible to consult or are very costly to access� The ability to use views is
important in many applications� including information integration� where infor�
mation sources are considered to store materialized views over a global database
schema ��� ��� �	
�

� This work has been partially supported by the Greek General Secretariat of Research
and Technology under the project �Logic Programming Systems and Environments
for developing Logic Programs� of �ENE����� contract no ����

�� This paper appears in Proc� of the �th International Conference� Database Theory
�ICDT����� C� Beeri and P� Buneman �editors�� LNCS �	
�� p�p� 
�	

	�� Springer

Verlag �����



Suppose that we want to integrate three databases that provide 
ight in�
formation� These three databases can be seen as views over the EDB predi�
cates international flight�X�Y � and local flight�X�Y � �which have the mean�
ing that there is a non�stop international 
ight from a greek cityX to city Y and�
there is a non�stop local 
ight from a greek city X to a greek city Y respectively��

v��X� � � international flight�Athens�X�
v��X� � � international flight�Rhodes�X�
v��X�Y � � � local flight�X�Athens�� local flight�Athens� Y �
v��X� � � local flight�X�Rhodes�

Suppose that the user is interested in whether there is a way to 
y from a
greek city X to a city Y in another country making at most one intermediate
connection in a greek city and then a direct international 
ight i�e� the following
query P� is asked�

p�X�Y � � � international flight�X�Y �
p�X�Y � � � local flight�X�Z�� international flight�Z� Y �

The user does not have access to the databases that contain the facts in the
predicates international �ight and local �ight but only to the views� Using only
the materialized views v�� v� and v�� it is not possible to �nd all the answers�
The best one can do is to retrieve all the 
ights that use either the international
airport of Athens or the international airport of Rhodes� i�e� ask the following
query Pv� on the available data�

p�Athens� Y � � � v��W�Rhodes�� v��Y �
p�Rhodes� Y � � � v��Rhodes�W �� v��Y �
p�Athens� Y � � � v��Athens�� v��Y �
p�X�Y � � � v��X�� v��X�W �� v��Y �

In fact� the program Pv which is said to be a retrievable program �i�e�� it
contains only the view predicates as EDB predicates�� is maximal in the sense
that any datalog program which uses only the views v�� v�� v� as EDB predicates
and produces only correct answers is contained in P� Such a program is said to
be a retrievable maximally contained program�

The problem that we consider here is � Given a datalog query and views de�
�ned over its EDB predicates� is there a retrievable maximally contained datalog
program�

Previous work on this problem is done in ��� ��
 where they restricted views to
being de�ned by conjunctive queries� whereas in ��� �
 disjunctive view de�nitions
are considered and is shown how to express a retrievable maximally contained
program in disjunctive datalog with inequality� In ��
� the problem of computing
correct �called certain� answers is considered� also� in the general case where
views are de�ned by datalog programs� they investigate the data complexity
problem under both the closed world assumption and the open world assumption�

In this paper� we investigate the case where views have disjunctions in their
de�nition� We prove the following results�

�



a� In the case where both the query and the views are given by non�recursive
datalog programs� we identify a non�trivial class of instances of the problem
where there exists a retrievable datalog���� program maximally contained in the
query� in this case� we give an algorithm to obtain it� this program computes
all correct answers� We know� though� that� in general such a program does not
exist ��
�

b� When the views are de�ned by recursive datalog programs and the query
by non�recursive datalog program�we reduce the problem to that of non�recursive
view de�nitions�

c� In the case the query is given by a recursive datalog program and the views
by non�recursive datalog programs� we construct a simple disjunctive logic pro�
gram� which� applied on a view instance� computes all correct answers whenever
it halts� This result is also obtained in ��
 under a similar technique� We also
show how� in certain cases� this disjunctive program can be transformed into a
datalog� ��� program thus obtaining the results mentioned in �a� above�

d� Finally� when both the views and the query are given by recursive pro�
grams� we prove that it is undecidable whether there exists a non�empty retriev�
able program Pv� Still� we give a criterion that gives a negative answer� in some
special cases� In fact� the undecidability result holds even in the case of simple
chain programs ���
�

Other related work is done in ��� ��� ��� 	
� where the approaches used es�
sentially look for rewritings producing equivalent queries� It is known ���
 that
the problem of �nding a rewriting that produces an equivalent program is NP�
complete� in the case� where both the query and the views are de�ned by disjunc�
tions of conjunctive queries� Other work concern conjunctive queries �the views
and the question asked� and include ���� ��
 where they give nondeterministic
polynomial time algorithms to �nd either a single retrievable query equivalent
to the given query or a set of retrievable queries whose union is contained in
the given query Q and that contains any other retrievable datalog query that is
contained in Q� Special classes of conjunctive queries are examined in ��
�

� Preliminaries

��� Logic programs and datalog

A disjunctive clause C is a formula of the form ���


A� � � � ��Am � � B�� � � � � Bn

where m � �� n � � and A�� � � � � Am� B�� � � � � Bn are atoms� If n � �� C is called a
positive disjunctive clause� If m � �� C is called a de�nite clause or Horn clause�
A de�nite�disjunctive program is a �nite set of de�nite�disjunctive clauses� A
Datalog program is a set of function free Horn clauses� A Datalog� ��� program is
a set of function free Horn clauses whose bodies are allowed to contain atoms
whose predicate is the built�in inequality predicate � ���� The left hand side of a
rule is called the head of the rule and the right hand side is the body of the rule�

�



A predicate is an intensional database predicate� or IDB predicate� in a program
P if it appears at the head of a rule in P� otherwise it is an extensional database
�EDB� predicate� A conjunctive query is a single non�recursive function�free Horn
rule�

Let D be a �nite set� A database over domainD is a �nite relational structure
D � �D� r�� � � � � rn�� where each ri is a relation over D� a substructure of a
database is a relational structure �D�� r��� � � � � r

�
n�� where each r

�
i contains a subset

of the facts contained in ri�
A query is a function from databases �of some �xed type� to relations of �xed

arity over the same domain� it has to be generic� i�e�� invariant under renamings
of the domain�

Datalog programs may be viewed as a declarative query language with the
following semantics� Let D be a database� thought of as a collection of facts about
the EDB predicates of a program P� Let Qk

P�p�D� be the collection of facts about
an IDB predicate p that can be deduced from D by at most k applications of
the rules in P� If we consider p the goal predicate �or output predicate�� then P
expresses a query QP�p� where

QP�p�D� �
�

k��

Qk
P�p�D�

We will sometimes write QP or Pp�D� instead of QP�p�
The above de�nition also gives a particular algorithm to compute QP�p� ini�

tialize the IDB predicates to be empty� and repeatedly apply the rules to add
tuples to the IDB predicates� until no new tuples can be added� This is known as
bottom�up evaluation� A derivation tree is a tree depicting the bottom up eval�
uation of a speci�c derived fact in the IDB� Its nodes are labeled by facts and
each node with its children correspond to an instantiation of a rule in P ���
�

Given a datalog program� we can de�ne a dependency graph� whose nodes
are the predicate names appearing in the rules� There is an edge from the node
of predicate p to the node of predicate p� if p� appears in the body of a rule
whose head predicate is p� The program is recursive if there is a cycle in the
dependency graph� We de�ne� also� the adorned dependency graph as follows� We
assign labels �possible none or more than one� on each edge� Suppose there is a
rule with head predicate symbol p and predicate symbol p� appears somewhere
in the body� suppose that the i�th argument of p is the same variable as the j�th
argument of p�� Then� on edge e � �p� p�� we assign a label l �i� j� we call the
pair �e� l� a p�pair� We de�ne a perfect cycle in the adorned dependency graph to
be a sequence of p�pairs �e�� l��� � � � � �ek� lk� such that the edges e�� � � � � ek form
a cycle and� moreover� the following holds� for all q � �� � � � � k � � if lq �i � j

then lq�� �j � j� for some j� and� if lk �i� j then l� �j � j� for some j�� We
say that a datalog program has no presistencies i� there is no perfect cycle in
the adorned dependency graph�

Given any datalog program P� we can unwind the rules several times and
produce a conjunctive query �over the EDB predicates of P� generated by P�
ProgramP can� therefore� be viewed as being equivalent to an in�nite disjunction

	



of all these conjunctive queries� Considering a conjunctive query� we freeze the
body of the query by turning each of the subgoals into facts in a database� we
obtain� thus� the canonical database of this query� The constants in the canonical
database that correspond to variables that also appear in the head of the query
are conveniently called head constants� If all EDB predicates are binary� we may
view a canonical database as a labeled graph� Correspondingly� we can refer to
a canonical database generated by a datalog program� We say that a datalog
program is connected i� all head variables of the program rules occur also in
the bodies of the corresponding rules and any canonical database �viewed as a
hypergraph� is connected�

A containment mapping from a conjunctive query Q� to a conjunctive query
Q�� is a function� h� that maps all variables of Q� on variables of Q�� so that
whenever an atom p�X�� X�� � � �� occurs in Q�� then an atom p�h�X��� h�X��� � � ��
occurs in Q��

The following are technical lemmata used in the proof of the main results�

Lemma �� Let P be a Datalog program and c a conjunctive query� There exists
a positive integer N depending only on the sizes of the program and the query so
that the following holds� If there is a conjunctive query ci generated by P such
that there is a containment mapping from c to ci� then there is a conjunctive
query cj generated by P� of size � N � such that there is a containment mapping
from c to cj �

Proof� First� we note� that� given a su�ciently large conjunctive query gener�
ated by a datalog program� we can apply a pumping on it� obtaining a shorter
conjunctive query generated by the same program �see ��
��

Suppose ci is of size � N � The containment mapping from c to ci maps c on
at most jcj constants in ci� Thus� there are � N �jcj constants in ci that are not
involved in this mapping� Consider this �free� part of ci and do on it a pumping�
obtaining� thus a shorter conjunctive query� on which the containment mapping
is preserved� ut

De�nition �� Consider a database� A neighborhood of size k in the database
is a connected substructure of size k� If we view the database as the canoni�
cal database of a conjunctive query� then� we can refer to neighborhoods in a
conjunctive query accordingly�

Lemma �� Suppose two conjunctive queries Q�� Q� such that� each neighbor�
hood of size up to k appears in one query i� it appears in the other� Then� for
any conjunctive query Q of size up to k� there is containment mapping from Q

to the query Q� i� there is containment mapping from Q to Q��

��� Retrievable programs

Let P be any datalog program over EDB predicates e�� e�� � � � � em and with out�
put predicate q� Let v�� v�� � � � � vn be views de�ned by datalog programs over
EDB predicates e�� e�� � � � � em� call PV the union of programs that de�ne the

�



views� We want to answer the query QP assuming that we do not have ac�
cess to database relations e�� e�� � � � � em� but only to views v�� � � � � vn� we need a
�certain� answer no matter which is the database that yielded the given view
instance�

De�nition �� A certain answer to query QP � given a view instance DV � is a
tuple t such that� for each database D over e�� e�� � � � � em with DV � PV�D�� t
belongs to QP�D��

The above de�nition assumes the open world assumption� under the closed
world assumption� the de�nition requires thatDV � PV�D�� to compute a certain
answer in this case is harder �see ��
��

Let Pv be a datalog program over EDB predicates v�� v�� � � � � vn� We say that
Pv is a retrievable program contained in P if� for each view instance DV � all
tuples in Pv�DV � are certain answers�

Example 	� Let views v�� v� be de�ned over the EDB predicates e�� e�� e�� e��

v��X�Y � � � e��X�Y �
v��X�Y � � � e��X�Z�� e��Z� Y �
v��X�Y � � � e��X�Y �� e��Y �

and the query P by�

p�X� � � e��Y�X�� e��X�Z�

Then a retrievable program maximally contained in Pv� is�

pv�X� � � v��Y�X�� v��X�Z�

If Pv is applied on an instance of v�� v�� it will produce a set of answers� this
is a subset of the answers which will be produced if query P is applied on some
instance of the relations e�� e�� e�� e� which yields the given instance of v�� v�� For
example� suppose v� � f�a� b�� �b� c�� �b� d�� �c� f�g and v� � f�d� a�g� Then Pv will
produce the set of answers f�a�g� A database that yields the above view instance
could have been either D� � fe��a� b�� e��b� c�� e��c� f�� e��c� d�� e��d� a�� e��b� c��
e��a�g or D� � fe��a� b�� e��b� d�� e��c� f�� e��d� c�� e��f� g�� e��d� a�� e��d� b��
e��a�� e��c�� e��b�g �or in�nitely many other alternatives�� If we apply P on
D�� we get the answers f�a�� �c�g� whereas if we apply P on D� we get the an�
swers f�a�� �b�g� tuple �a� is the only answer common to both� It turns out that�
for any view instance� program Pv provably derives exactly those answers that
are common to all relational structures over e�� e�� e�� e� that yield this view
instance� Note� that if the programs that de�ne the views are applied on D��
then more tuples will be derived than already in the view instance� namely the
v��c� g� and v��d� b�� This is called query answering under the open world as�
sumption ��
� i�e�� the available data in the views is assumed to be a subset
of the data derived by the view de�nition programs if they are applied on the
non�accessible relations e�� e�� e�� e�� ut

�



We investigate the following problem� Given a datalog program P and mate�
rialized views v�� v�� � � � � vn� construct a datalog program Pv with the following
properties�

�i� Pv is a retrievable program contained in P

�ii� Every datalog program that satis�es condition �i� is contained in Pv�

When both conditions �i� and �ii� hold� we say that Pv is a retrievable program
maximally contained in P�

A few technical de�nitions� Given a view instance DV � we de�ne an expansion
of DV to be any database �over e�� � � � � em� that results from DV after replacing
the view facts with facts that are implied by one of the conjunctive queries
produced from the view de�nitions �i�e�� assuming the rules contain only EDB
predicates in their bodies� we unify each tuple from DV with the head of some
rule� freeze the rest of the variables in the body of the rule and replace the
view fact by the facts in the body�� We denote an expansion of DV by R�DV ���
E�g�� in example �� if DV � fv��a� b�� v��b� c�g� then an expansion is R�DV � �
fe��a� ��� e���� b�� e��b� c�� e��c�g�

� Retrievable disjunctive programs

Let P be any datalog program with output predicate q and v�� v�� � � � � vn be
views given by non�recursive datalog programs over the predicates of P� We will
construct in the following a disjunctive logic program Pdisj and we will show
that it is maximally contained in P�

In fact� we construct a program Pdisj which di�ers from being a datalog
program in that it might contain disjunctions and function symbols in the head
of some rules �which we call V���rules��

The construction is easy� Pdisj contains� �i� all the rules of P except the
ones that contain as subgoals EDB predicates which do not appear in any of
the programs of the views and ii� For each view vi� we complete its de�nition�
i�e�� we construct a collection of �possibly� disjunctive clauses as follows� We
rewrite the de�nition of the view vi as a disjunction of conjunctive queries�
For this we rewrite each rule by renaming the head variables and possibly by
introducing equalities in the bodies of the rules so as all the rules of the view
de�nition have the same atom vi�X�� � � � � Xm� in their heads� Then� we replace
all occurrences of each existential variable by a function �Skolem function� of
the form f�X�� � � � � Xm�� where X�� � � � � Xm are all variables in the head of the
rule and f is a function symbol such that for each existential variable we use
a di�erent function symbol� We then take the disjunction of the bodies of the
rules and rewrite it as a conjunction of disjuncts� For each disjunct� we create
a new rule with this disjunct in the head and the atom vi�X�� � � � � Xm� in the
body� Finally� all equalities are moved in the body as inequalities� The clauses
obtained by applying this process to all view de�nitions are called V���rules�

�



Example 
� Assume that there are two materialized views v� and v� available
de�ned as follows

v��X�Z� � � e�X�Y �� r�Y� Z�
v��X�X� � � e�X�X�
v��X�Z� � � r�X�Y �� e�Y� Z�

where e and r are EDB predicates�
We construct the V���rules as follows� By completing the de�nition of v� we

take�
v��X�Z� � �Y �e�X�Y � � r�Y� Z�


We introduce a Skolem function in order to eliminate the existential variable Y �
We get

v��X�Z� � e�X� f�X�Z�� � r�f�X�Z�� Z�

From this we obtain the following clauses

e�X� f�X�Z�� � � v��X�Z�
r�f�X�Z�� Z� � � v��X�Z�

Now we complete the de�nition of v�

v��X�Z� � �Z � X � e�X�X�
 � �Y �r�X�Y � � e�Y� Z�


and introduce a Skolem function in order to eliminate the existential variable Y �
We get

v��X�Z� � �Z � X � e�X�X�
 � �r�X� g�X�Z�� � e�g�X�Z�� Z�


transforming the right hand side into conjunctive normal form� we �nally get

Z � X � r�X� g�X�Z�� � � v��X�Z�
Z � X � e�g�X�Z�� Z� � � v��X�Z�
e�X�X� � r�X� g�X�Z�� � � v��X�Z�
e�X�X� � e�g�X�Z�� Z� � � v��X�Z�

Moving equalities to the right hand side� we �nally get the following V���
rules�

r�X� g�X�Z�� � � v��X�Z�� Z �� X

e�g�X�Z�� Z� � � v��X�Z�� Z �� X

e�X�X� � r�X� g�X�Z�� � � v��X�Z�
e�X�X� � e�g�X�Z�� Z� � � v��X�Z�

ut

We view Pdisj as a program over the EDB predicates v�� v�� � � � � vn� The
computation of program Pdisj applied on a database D is considered in the
usual bottom up fashion only that now a� it computes disjunctions of facts ���

and b� by �ring a datalog rule we mean� either we unify each subgoal with an

�



already derived fact or we unify the subgoal with a disjunct in an already derived
disjunction of facts� in the latter case the rest of the disjuncts will appear in the
newly derived disjunctive fact together with the head literal and other disjuncts
resulting possibly from other subgoals� �Observe that V���rules will be used only
in the �rst step of the bottom up evaluation�� Derivation trees for this bottom
up evaluation are de�ned in the usual way only that the labels on the nodes
are disjunctions of facts� In the following� we will refer to a derivation tree with
nodes labeled by either facts or disjunctions of facts as a disjunctive derivation
tree�

We will refer to the output database of program Pdisj applied on an input
database� meaning the database that contains only the atomic facts without
function symbols computed by Pdisj�

We say that program Pdisj is contained in �equivalent to� respectively� a
datalog program P i� for any input database� the output database computed by
Pdisj is contained in �is equal to� respectively� the output database computed
by P� If every disjunctive datalog program contained in P is also contained in
Pdisj� we say that Pdisj is a retrievable disjunctive datalog program maximally
contained in P�

Theorem �� Let P be any datalog program and v�� � � � � vn be views given by
non�recursive datalog programs over the EDB predicates of P� let Pdisj be the
disjunctive program constructed from P and the views� Then� program Pdisj is
a retrievable disjunctive datalog� ��� program maximally contained in P�

Proof� �Sketch� The program Pdisj contains �i� rules of P without view subgoals
and �ii� non�recursive V���rules� Therefore� it can be equivalently thought of as
program P applied on databases having disjunctions as facts� �i�e�� those facts
that are derived by V���rules��

One direction is easy� Pdisj uses resolution in the bottom up evaluation we
described� therefore it computes all the logical consequences of P applied on a
particular disjunctive database� namely the one containing the disjunctive facts
over EDB predicates of P implied by the view facts and their de�nitions in terms
of the EDB predicates of P� Hence Pdisj is contained in any retrievable program
maximally contained in P�

For the other direction� we argue as follows� Let Pv be a maximally con�
tained retrievable datalog program� Consider an arbitrary database D over the
EDB predicates v�� � � � � vn of P� Let q�a� be a fact computed by Pv� Consider all
possible expansions of D derived by replacing a view fact by a collection of facts
derived from one of the conjunctions which de�ne this view� Because Pv is con�
tained in P� for any expansion database� fact q�a� is computed by P� therefore�
for each expansion database� there is at least one derivation tree which derives
q�a�� Let T be an arbitrary collection containing at least one such derivation tree
for each expansion database� It su�ces to prove that there is a �nite derivation
tree of Pdisj that computes q�a� in D�

We conveniently de�ne the merging of two �disjunctive� derivation trees� T�
and T�� We choose a leaf of T�� We identify this leaf with the root of T� and label

�



this node by the disjunction of the two labels� The rest of the nodes are left as
are �in fact� we hang tree T� from T�� only that some of the labels are changed�
The label in the root of T� appears in the disjunction in every node of the path
from the particular leaf to the root of T�� The label of the leaf of T� appears
in the disjunction in every node on a number of paths �arbitrary chosen� each
leading from the root to a leaf of T��

The rest of the proof involves a combinatorial argument to show the following
lemma�

Lemma �� There is a collection T of derivation trees as de�ned above� such
that the following holds� Considering as initialization set the set of derivation
trees T � there is a sequence of mergings that produces a disjunctive derivation
tree of program Pdisj which computes q�a� in D�

ut

� Queries and views de�ned by non�recursive programs

In this section we consider the case of non�recursive query datalog programs and
views de�ned by datalog programs without recursion as well�

Theorem �� Suppose that the program de�ning the query is a non�recursive
connected datalog program and the programs de�ning the views are all non�
recursive datalog programs� Suppose that there exists a retrievable datalog pro�
gram maximally contained in the query� which has no persistencies� Then there
exists a retrievable datalog program maximally contained in the query which is
non�recursive�

Proof� �Sketch�� Let P be the program de�ning the query and suppose there
is a retrievable datalog program maximally contained in the query� call it Pv�
Suppose Pv is recursive� Consider any canonical database of Pv and suppose
D is an expansion of this canonical database� Consider the conjunctive query
generated by P� say Q� such as there is a containment mapping from Q to D
�D being viewed as a conjunctive query�� Since Pv has no persistencies� any
canonical database� and hence D as well� is of low �� a function of the size of
the program� degree� Moreover Q is connected� consequently� the image ofQ inD
may involve only a limited number �� a function of the sizes of the programs� of
constants of the domain of D� Therefore Pv is contained in a retrievable program
which itself is contained in the query� a contradiction� ut

We� next� present a procedure which produces a retrievable program� when�
ever the instance of the problem obeys certain conditions� We show that if the
procedure reaches a datalog program then this is a retrievable program maxi�
mally contained in the query�

Our procedure proceeds in two steps� a� From Pdisj we try to obtain a Horn
program PHorn which might contain function symbols and b� In the case we
�nd a Horn program in the previous step� we eliminate from PHorn the function

��



symbols deriving the �nal program Pv� The elimination of function symbols is
done in a bottom up fashion as in ��� ��
� Note that in step �a� we might not
obtain a Horn program�

In the �rst step� we try to obtain program PHorn by applying program trans�
formation rules to Pdisj � The basic transformation rule that we use is unfolding
���
� Unfolding in disjunctive logic programs is an extension of the unfolding in
Horn clause programs� In general� the application of the unfolding rule consists
of a sequence of elementary unfolding steps� Suppose that we have to unfold
�elementary unfolding� a clause C at a body atom B using a clause D at a head
atom B�� Suppose that � is the most general uni�er of B and B�� Then we get
a clause whose body is the body of C after replacing the atom B by the body
of D and whose head is the disjunction of the head of C with the head atoms
of D except B�� In this clause we apply the uni�er �� Now in order to unfold a
clause R at a chosen body atom B� we have to use all program clauses� which
have a head atom uni�able with B� If we have more than one such head atoms
we use the clause in all possible ways� Moreover� in the later case we have also to
unfold the initial clause using the clauses obtained by the previous elementary
unfolding steps if they also have head atoms uni�able with B and so on� The set
of clauses obtained in this way� denoted by unfold�C�B�� may replace clause R
in the program� For more details about the unfolding operation� see ���
�

Besides unfolding� some clause deletion rules ��
 are used� which preserve
the semantics of a disjunctive logic program� �thus� we discard useless clauses��
More speci�cally� a� we can delete a clause which is a variant of another program
clause� b� we can delete a clause which is a tautology �i�e� there is an atom which
appears in both the head and the body of the clause�� c� we can delete a failing
clause �i�e� a clause which has an atom in its body which does not unify with
any head atom of the program clauses�� d� we can delete a clauses which is
subsumed by another program clause� We say that a clause C subsumes another
clause D if there exists a substitution � such that head�C�� � head�D� and
body�C�� � body�D�� All these deletion rules preserve the equivalence of the
disjunctive programs ��
�

In the following� we will also use factoring ���
� If two head atoms of a dis�
junctive clause C have a most general uni�er � then C� is a factor of C� When
we say that we take the factoring closure of a program we mean that we add to
the program all factors obtained by applying factoring to all program clauses in
all possible ways�

All the transformation rules presented so far preserve the equivalence of pro�
grams� Now we present� through the following two lemmas� two deletion rules�
which although they do not preserve the equivalence of programs� they preserve
the set of the atoms of the query predicate which are logical consequences of the
programs�

Lemma �� Let P be a disjunctive logic program� p be a predicate in P and C

be a clause in P of the form

A� � � � ��Am � � B�� � � � � Bn

��



Suppose that there is an atom Aj in fA�� � � � � Amg whose predicate is di�erent
from p� such that there is no clause in P with a body atom which uni�es with
Aj� Let P

� � P � fCg� Then� for any database D� P�p�D� � Pp�D��

Lemma �� Let P be a disjunctive logic program� p be a predicate in P and C

be a clause in P of the form

A� � � � ��Am � � B�� � � � � Bn

Suppose that there is no clause in P with a body atom whose predicate is p�
Suppose also that P is closed under factoring and that there are two or more
atoms in the head of C whose predicate is p� Let P� � P � fCg� Then� for any
database D� P�p�D� � Pp�D��

In the following� we present an algorithm which gives a systematic way to
apply the above described operations on V�� � P deriving� in certain cases� a
retrievable datalog� ��� program maximally contained in P� We suppose� without
loss of generality� that all predicates appearing in the body of rules of the query
program are EDB predicates �as the program is non�recursive� we can always
obtain a program of this form by applying unfolding to all IDB body atoms��

Procedure�

Input� V��� P�
Output� Pder�

begin

� Let P � P � V���
� Let Sp be the set of EDB predicates in P�
while Sp �� f g and check
 is true do

begin

� Select a predicate e from Sp�
while check	�e� is true and check
 is true do
begin

� Select a clause D from P whose body contains an atom B

whose predicate is e�
� Unfold D at B by P � Let P � � �P � fDg� � unfold�D�B��
� Let P �� be the obtained from P � by getting
the factoring closure of the clauses in unfold�D�B��

� Let P ��� be the program obtained from P �� by
applying the deletion rules�

� Let P � P ����
end

Let Sp � Sp � feg�
end

end�

The condition check	�e� is true if� There is a clause in P with a body atom
whose predicate is �e
�

��



The condition check
 is true if�There is no clause in P with an EDB atom E�

in its body which uni�es with an EDB atom E� in the head of the same clause�

Example �� Consider the following datalog program P

��� p�X� � � e�X�Y �� r�Y �
��� p�X� � � e�Y�X�� s�X�
��� p�X� � � e�X�X�

and assume that there are two materialized views v� and v� available

�	� v��X�Y � � � r�X�� s�Y �
��� v��X�Y � � � e�X�Y �
��� v��X�Y � � � e�Y�X�

Applying the procedure described in the previous section� we get Pdisj which
contains the rules ������� and the following V���rules�

��� r�X� � � v��X�Y �
��� s�Y � � � v��X�Y �
��� e�X�Y � � e�Y�X� � � v��X�Y �

Now we apply the procedure described above in order to obtain a datalog
program which has the same atomic results as Pdisj�

We unfold ��� at �e�X�Y �� using ���� We get a new equivalent program� which
contains the clauses P� � f�� �� �� �� ����������g� where�

���� p�X� � e�Y�X� � � v��X�Y �� r�Y �
���� p�X� � e�Y�X� � � v��Y�X�� r�Y �
���� p�X� � p�Y � � � v��Y�X�� r�X�� r�Y �

Unfolding ��� at �e�X�Y �� using ���� ����� ���� we get P� � f�� �� �� �� ���
��� ��� ��� �	� ��� ��� ��g� where�

���� p�X� � e�X�Y � � � v��Y�X�� s�X�
��	� p�X� � e�X�Y � � � v��X�Y �� s�X�
���� p�X� � p�Y � � � v��Y�X�� s�X�� s�X�
���� p�X� � � v��X�Y �� r�Y �� s�X�
���� p�X� � � v��Y�X�� r�Y �� s�X�

Finally� unfolding ��� at �e�X�X�� using ���� ����� ����� ����� ��	� we get
P� � f�� �� �� ������������ �	� ������ ����������������������	g� where�

���� p�X� � e�X�X� � � v��X�X�
���� p�X� � e�X�X� � � v��X�X�
���� p�X� � � v��X�X�
���� p�X� � � v��X�X�� r�X�
���� p�X� � � v��X�X�� r�X�
���� p�X� � � v��X�X�� s�X�
��	� p�X� � � v��X�X�� s�X�

��



Taking the factoring closure of the program� we get from clauses ���� and
���� the clauses�

���� p�X� � � v��X�X�� r�X�� r�X�
���� p�X� � � v��X�X�� s�X�� s�X�

which are also added to the program� Clauses ����� ����� ��	�� ���� can be
deleted since they are variants of other program clauses� Clauses ����� ����� ����
and ���� can be deleted since they are subsumed by clause ����� Clauses ����
����� ����� ���� and ��	� can be deleted because of lemma 	 �i�e� the atom with
the predicate �e� does not occur in any program clause�� Finally� clauses ����
and ���� can be deleted from the program because of lemma �� Therefore� the
program obtained so far is f�� �� ��� ��� ��g� Now� unfolding the EDB atoms in
the bodies of ���� and ���� and deleting the redundant clauses we �nally get�

p�X� � � v��X�X�
p�Y � � � v��X�Y �� v��Z�� Y �� v��X�Z��
p�X� � � v��X�Y �� v��Z�� X�� v��Y� Z��

This program is a retrievable Datalog program maximally contained in P� ut

Concerning the procedure described above we can prove the following theo�
rem�

Theorem �� The following hold for the procedure above�

	� The procedure always terminates�

� Suppose that by applying the procedure above to a program Pdisj we get a

program Pder whose clause bodies do not contain any EDB atom� Then Pder
is a non�recursive datalog� ��� program which is maximally contained in P �

In the following we give a syntactic su�cient condition for the algorithm to
end up with a datalog� ��� program�

Su�cient condition� Consider the V���rules and the query program P� For
each rule in P there is at most one atom in its body whose predicate occurs in
the head of a �non�trivial� disjunctive V���rule�

Theorem �� If the su�cient condition holds for a a set of V���rules and a
query program P then by applying the procedure to V�� � P we get a retrievable
maximally contained non�recursive datalog���� program�

� Recursive Views

In the case where the views are given by recursive datalog programs and the
query by a non�recursive datalog program P� the problem of computing a re�
trievable program maximally contained in P is reduced to that of non�recursive
view de�nitions �following lemma��

�	



Lemma 	� Let P be any non�recursive datalog program and v�� � � � � vn be views
given by any datalog programs over the EDB predicates of P� Then� there exists
a positive integer N depending only on the sizes of the programs so that the
following holds�

Consider a new set of views v��� � � � v
�
m with view de�nitions Pv�

�

�Pv�

�

� � � � �Pv�

m

respectively� where Pv�

i
is the disjunction of all conjunctive queries that are pro�

duced by Pvi and have size less that N �
If Pv is a retrievable program contained in P under the new view de�ni�

tions� then Pv is a retrievable program contained in P under the original view
de�nitions�

Proof� Let cv be a conjunctive query generated by Pv� Let c
expi
v be all expansions

of cv that result after replacing each occurrence of a view atom by one of their
new de�nitions� Then� for each cexpiv � there is a conjunctive query ci generated
by P and there exists a containment mapping� hi� from ci to cexpiv �

Now� obtain all expansions ocexpiv � i � �� �� � � �� of cv considering the origi�
nal view de�nitions� Suppose there exists an i such that there is no conjunctive
query in P with a containment mapping on ocexpiv � Then� a view occurrence in
cv has been replaced by a long �� N � O��s log s�� where s is the maximum size
of the programs de�ning the query and the views� conjunctive query R�v�� R�v�
appears as a subquery in ocexpiv � From ocexpiv � we construct a shorter expansion
ocexpjv � We can pump R�v� to get a shorter view expansion which� though� pre�
serves all the neighborhoods of size 	 m �the size of the maximum conjunctive
query in P �see lemmata �� ��� We apply this pumping on all expansions that are
longer than N � getting� in the end� an expansion� cexpiv � of cv under the new view
de�nitions� There exists� though� a conjunctive query of P with a containment
mapping on cexpiv � Since ocexpiv and cexpiv have the same neighborhoods of size up
to m� there is a containment mapping also on ocexpiv � this is a contradiction� ut

Theorem �� Let P be any non�recursive connected datalog program and v�� � � � � vn
be views given by any datalog programs over the EDB predicates of P� Suppose
there exists a retrievable datalog program maximally contained in P which has
no persistencies� Then� there exists a retrievable datalog program maximally con�
tained in P which is non�recursive�

Proof� An immediate consequence of the preceding lemma� and theorem �� ut

� Chain programs

A chain rule is a rule over only binary predicates� moreover the �rst variable in
the head is identical to the �rst variable of the �rst predicate in the body� the
second variable in the head is identical to the last variable of the last predicate
in the body and the second variable of the i�th predicate is identical to the �rst
variable of the i � ��th predicate in the body� A chain program contains only
chain rules� It is easy to see that any conjunctive query generated by a chain
program P corresponds to a canonical database which is a simple path spelling

��



a word over the alphabet of the EDB predicate symbols� Thus� we can view a
chain program as generating a language over this alphabet� we call this language
LP � Observe that for chain programs� LP is a context free language�

In the case� though� where both the query and the views are de�ned by
recursive programs� it becomes undecidable to answer the question whether there
is a non�empty datalog program that is contained in P and uses only the given
views as EDB predicates� it remains undecidable even in the case where both
program P and the views are given by chain programs�

The reduction� in the following theorem is done from the containment prob�
lem of context free grammars ���� ��


Theorem 	� Given a datalog chain program P and views v�� v�� � � � � vm which
are also given by chain programs over the EDB predicates of P� it is undecidable
whether there is a non�empty retrievable datalog program Pv contained in P�

In some cases� though� we can have a negative answer in the question whether
there exists a �simple� non�empty retrievable program� as it is stated in the
theorem that follows�

Here on� we consider the following situation� A datalog query given by chain
program P and materialized views� v�� v�� � � � � vm� over the EDB predicates of
P� which are also given by chain programs� Let Pv be a datalog program �not
necessarily chain� contained in P that uses only v�� v�� � � � � vm as EDB predicates�

Consider a datalog program P where both IDB and EDB predicates are
binary� Take any conjunctive query c produced by P and take the canonical
database of c� We call P simple if� for all c� the canonical database �viewed as a
directed graph� contains a number of pairwise node�disjoint simple paths with
endpoints on the two head constants� i�e�� besides the head constants every con�
stant �viewed as a node� has in�degree one and out�degree one� Chain programs
are simple�

We need some technical concepts here on pumping lemmas for formal lan�
guages� Let w be a word over the alphabet �� For �xed positive integer N � we
say that wi � uxivyiw� i � �� �� � � � is a pumping sequence for w if w � uxvyw

and j xy j� N � For context free languages� there exists a positive integer N �
such that� for any word in a language� L� longer than N � there exists a pumping
sequence wi� i � �� � � �� such that wi� i � �� � � � also belongs in the language� We
call such a pumping sequence a proper pumping sequence wrto language L�

Theorem 
� Let P be a chain program and v�� v�� � � � � vm views over the EDB
predicates of P� which are also given by chain programs V�� V�� � � � � Vm� respec�
tively� Suppose there exists a simple retrievable datalog program contained in P�
Then there exists a �xed positive integer N �depending only on the sizes of the
programs for the views and P�� and there is a view de�nition Vi such that for
any word w in LVi � with j w j� N � the following happens� There is a word wP
in LP such that wP � ww� and for any proper pumping sequence� w�� w�� � � �� of
w wrto LVi � there exists an in�nite subsequence wi� � wi���� � � � such that wi��jw

�

also belongs to LP � for all j � �� �� � � ��

��



For an application� consider the following program P�

p�X�Y � � � a�X�Z��� p�Z�� Z��� p�Z�� Z��� a�Z�� Y �
p�X�Y � � � b�X�Y �

and the views�

v��X�Y � � � a�X�Z��� v��Z�� Z��� a�Z�� Y �
v��X�Y � � � b�X�Z��� b�Z�� Y �
v��X�Y � � � a�X�Z��� v��Z�� Y �
v��X�Y � � � a�X�Y �

Theorem �� Given the views v�� v�� there is no retrievable simple datalog pro�
gram contained in P�

Proof� Consider any word w � w�w�� of LP where w� is a su�ciently large word
of Lv� �Lv� respectively�� Consider a proper pumping sequence of w� wrto Lv�
�Lv� respectively�� w�� w�� � � �� Suppose there exists a retrievable simple program�
Then� for in�nitely many i�s� wiw

� is also a word in LP � according to the theorem
above� Observe� though� that any word in LP longer than four contains �k � �
as and k � � bs� wiw

� will not retain this balance� therefore it is not a word of
LP � ut

� Conclusion

We investigated the problem of answering queries using materialized views� In
particular� we searched for a retrievable program maximally contained in the
query� In the case the query is de�ned by a non�recursive datalog program and
the views by recursive datalog programs� we reduced the problem to that of non�
recursive de�nitions for both the query and the views� We showed that� in the
case where both the query and the views are de�ned by recursive datalog pro�
grams� then the problem becomes easily undecidable� we showed� though� some
methods to produce negative results� It would be interesting to further pursue
this latter line of research� In the case both the query and the views are de�ned
by non�recursive datalog programs� we showed how� in certain cases� we can
produce a retrievable non�recursive datalog���� program maximally contained in
the query� It seems that� further investigation towards this direction will produce
interesting results� We are currently working on this�

Acknowledgment�We thank Vassilis Vassalos for helpful discussions�

References

��� S� Abiteboul and O� Duschka� Complexity of answering queries using materialized
views� In Proc� ACM Symposium on Principles of Database Systems� �����

��� Serge Abiteboul� Querying semi�structured data� In Proceedings of the Sixth

International Conference on Database Theory� pages ����� Springer�Verlag� �����

��



��� F� Afrati� S� Cosmadakis� and M� Yannakakis� On datalog vs� polynomial time�
J� Computer and Systems Sciences� ����
��������� �����

��� Surajit Chaudhuri� Ravi Krishnamurthy� Spyros Potamianos� and Kyuseak Shim�
Optimizing queries with materialized views� In Proceedings of the ��th Interna�

tional Conference on Data Engineering� Los Alamitos� CA� pages ��	��		� IEEE
Comput� Soc� Press� �����

��� Chandra Chekuri and Anand Rajaraman� Conjunctive query containment revis�
ited� In Proceedings of the Sixth International Conference on Database Theory�
pages ����	� Springer�Verlag� �����

��� Oliver M� Duschka� Query Planning and Optimization in Information Integration�
PhD thesis� Stanford University� December �����

��� Oliver M� Duschka and Michael R� Genesereth� Answering recursive queries using
views� In Proc� ��th ACM SIGACT�SIGMOD�GIGART Symposium on Principles

of Database Systems� pages �	������ �����
��� Oliver M� Duschka and Michael R� Genesereth� Query planning with disjunctive

sources� In Proc� of the AAAI��� Workshop on AI and Information Integration�
�����

��� M� Gergatsoulis� Correctness�preserving transformations for disjunctive logic pro�
grams� Demo ����� Institute of Informatics � Telecom� NCSR �Demokritos�� �����

��	� Manolis Gergatsoulis� Unfold�fold transformations for disjunctive logic programs�
Information Processing Letters� ����
������� April �����

���� M� A� Harrison� Introduction to formal language theory� Addison�Wesley� �����
���� Nam Huyn� A more aggressive use of views to extract information� Technical Re�

port STAN�CS�TR��������� Stanford University� Computer Science Department�
�����

���� Alon Y� Levy� Alberto O� Mendelzon� Yehoshua Sagiv� and Divesh Srivastava�
Answering queries using views� In Proc� ��th ACM SIGACT�SIGMOD�SIGART

Symposium on Principles of Database Systems� pages ����	�� �����
���� Alon Y� Levy� Divest Srivastava� and Thomas Kirk� Data model and query evalu�

ation in global information systems� Journal of Intelligent Information Systems�
����� Special Issue on Networked Information Discovery and Retrieval�

���� J� Lobo� J� Minker� and A� Rajasekar� Foundations of Disjunctive Logic Program�
ming� MIT Press� �����

���� Anand Rajaraman� Yehoshua Sagiv� and Je�rey D� Ullman� Answering queries
using templates with binding patterns� In Proc� ��th ACM SIGACT�SIGMOD�

GIGART Symposium on Principles of Database Systems� San Jose� CA� �����
���� Oded Shmueli� Decidability and expressiveness aspects of logic queries� In Proc�

�th ACM SIGACT�SIGMOD�SIGART Symposium on Principles of Database Sys�

tems� pages �������� �����
���� Je�rey D� Ullman� Principles of Database and Knowledge�Base Systems� volume

I � II� Computer Science Press� �����
���� Je�rey D� Ullman� Information integration using logical views� In Proceedings of

the Sixth International Conference on Database Theory� pages ����	� Springer�
Verlag� �����

��	� Je�rey D� Ullman and Allen Van Gelder� Parallel complexity of logical query
programs� In Proc� �	th IEEE Symp� on Foundations of Comp� Sci�� pages ����
���� �����

��


