
The Branching�Time Transformation Technique

for Chain Datalog Programs

Panos Rondogiannis �prondo�di�uoa�gr�
Dept� of Informatics and Telecommunications� University of Athens�
����� Athens� Greece

Manolis Gergatsoulis �manolis�iit�demokritos�gr�
Inst� of Informatics � Telecommunications�
National Centre for Scienti�c Research 	NCSR
 �Demokritos��
��
 �� A� Paraskevi Attikis� Athens� Greece

Abstract� The branching�time transformation technique has proven to be an e�cient approach
for implementing functional programming languages� In this paper we demonstrate that such a
technique can also be de�ned for logic programming languages� More speci�cally� we �rst introduce
Branching Datalog� a language that can be considered as the basis for branching�temporal deductive
databases� We then present a transformation algorithm from Chain Datalog programs to the class
of unary Branching Datalog programs with at most one IDB atom in the body of each clause� In
this way� we obtain a novel implementation approach for Chain Datalog� shedding at the same time
new light on the power of branching�time logic programming�

Keywords� Deductive Databases� Chain Programs� Program Transformation� Temporal Logic
Programming� Branching Time

�� Introduction

The branching�time transformation is a promising technique that has been used
for implementing functional programming languages �Yaghi� ����� Wadge� �����
Rondogiannis and Wadge� ����� Rondogiannis and Wadge� �����	 The basic idea
behind the technique is that the recursive function calls that take place when a
functional program is evaluated� actually form a tree
like structure	 This observation
has led to the idea of rewriting the source program into a form in which the tree
structure of the recursion appears more explicitly	 More speci�cally� the functional
program is transformed into a zero
order branching�time functional program� which
has a simpler structure and which can be easily evaluated using a demand
driven
technique �also called eduction �Faustini and Wadge� ����� Du and Wadge� ������	
During eduction� in order to calculate the value of the source program� one simply
demands the value at the root of the corresponding tree� the demand for this value
generates demands that propagate to the interior nodes of the tree until leaf nodes
are reached	 The partial results returned from each node are used to compose the
�nal result	 The branching
time technique o
ers a promising alternative to the usual
reduction
based implementations �Jones� ����� of functional languages	

It is therefore natural to ask whether a similar transformation exists for logic
programming languages	 Our work aims at exactly this point� to examine whether

c� ���� Kluwer Academic Publishers� Printed in the Netherlands�

JIIS����tex� ���������	� 	
��� p�	



�

logic programs can be transformed into simpler in structure branching
time logic
programs	 More speci�cally� in this paper we �rst introduce Branching Datalog�
a language that can be considered as the basis for branching
temporal deductive
databases	 We then de�ne a transformation algorithm from the class of Chain
Datalog programs �Ullman and Gelder� ����� Afrati and Papadimitriou� ����� Afrati
and Papadimitriou� ����� Dong and Ginsburg� ����� to the class of unary Branching
Datalog programs with at most one IDB atom in the body of each clause	 In this
way� we obtain a novel implementation approach for Chain Datalog� shedding at the
same time new light on the power of branching
time logic programming	 It should
be noted that the class of Chain Datalog is an especially important one because
it embodies a form of recursion that is very common in many queries �e	g	 queries
related to graph applications� transitive closures of relations� etc	�	

We should note at this point that the proposed technique belongs and contributes
to the research area of query optimization for Datalog programs	 More speci�

cally� the branching
time transformation shares the same underlying philosophy
with techniques which take into account the bound arguments of the query �such
as the magic transformation �Beeri and Ramakrishnan� ������ the counting tech�
nique �Sacc�a and Zaniolo� ������ the pushdown approach �Greco et al	� ������ etc	�	
In all these techniques� the bound arguments of the goal clause are incorporated
through an appropriate transformation into the source program �query�� in this
way� the bottom
up evaluation takes these arguments into account pruning the set
of atoms that the immediate consequence operator has to produce	

The following example is given in order to motivate the proposed transformation	
The precise presentation of all the concepts involved will be given in subsequent
sections�

EXAMPLE �	 The following is a Chain Datalog program together with a goal
clause�

� p�a�Y��
p�X�Y�� e�X�Y��
p�X�Y�� q�X�Z��q�Z�Y��
q�X�Y�� e�X�Z��p�Z�Y��

JIIS����tex� ���������	� 	
��� p��



�

where p and q are IDB predicates� while e is an EDB predicate� The output of the
transformation is�

� first p��Y��
first p��a��
p��Y�� next� e��Y��
next� e��X�� p��X��
p��Y�� next� q��Y��
next� q��Z�� next� q��Z��
next� q��X�� p��X��
q��Y�� next� p��Y��
next� p��Z�� next� e��Z��
next� e��X�� q��X��
e��Y�� e�X�Y�� e��X��

Notice that all intensional �IDB� predicates in the resulting program are unary
and each clause has at most one IDB atom in its body� Notice also that the bound
argument of the goal clause has been incorporated into the program in the form of a
unit clause� in this way this atom will guide from the very beginning of the bottom�up
evaluation the production of atoms that are relevant to the query� The program also
contains certain temporal operators �first� next�� next�� next�� next�� next��
whose semantics will be introduced in a later section�

The main contributions of the paper can be summarized as follows�

� The language Branching Datalog is introduced and its semantics are de�ned	
The new language can be viewed as a formalism that forms the basis for further
investigations in the area of branching
temporal deductive databases	 Temporal
deductive databases constitute a well developed area of research �Baudinet
et al	� ����� Orgun� �����	 Branching Datalog forms a particular instance of
temporal deductive databases in which time has a branching �i	e	 tree
like�
structure	 Another formalism that can be considered as a branching deduc

tive database language� is DatalognS �Chomicki� ����� �in which� however� the
notion of time is not as explicit as in our case�	

� A novel transformation algorithm from Chain Datalog programs into simpler in
structure Branching Datalog programs is de�ned	 The proposed transformation
is the analogue of the branching
time transformation that has been de�ned in
the functional programming domain �Rondogiannis and Wadge� ����� Ron

dogiannis and Wadge� ����� Yaghi� �����	 This analogy suggests that other
interesting optimization techniques from the deductive databases domain �such
as �Beeri and Ramakrishnan� ����� Sacc�a and Zaniolo� ����� Greco et al	� ������
may be applicable in the functional programming area	

� The results are interesting from a foundational point of view� as they shed new
light on the power of temporal logic programming languages �branching
time
ones in particular� and their relationship to classical logic programming	

JIIS����tex� ���������	� 	
��� p��



�

The rest of the paper is organized as follows� Section � gives preliminary de�

nitions that will be used throughout the paper	 Section � de�nes the syntax and
semantics of Branching Datalog	 Section � introduces the branching
time transfor

mation algorithm	 Section � proves the correctness of the proposed transformation	
Section � discusses termination issues regarding bottom
up evaluation of the pro

grams obtained by the transformation	 Section � proposes improvements of the
transformation algorithm	 Section � compares the branching transformation tech

nique to other approaches for query optimization in the area of deductive databases	
Finally� section � concludes the paper with a brief discussion of possible future
extensions	

�� Preliminaries

A Datalog program P consists of a �nite set of function
free Horn rules	 Predicates
that appear in the head of some rule in P are called IDB predicates �IDBs�� while
predicates appearing only in the bodies of the rules of P are called EDB predicates
�EDBs�	 A set D of ground facts �or unit clauses� de�ning the EDBs is often called
a database	 We also assume the following notation� constants are denoted by a� b�
c� variables by X� Y� Z and predicates by p� q� r� also subscripted versions of the
above symbols will be used	 A term is either a variable or a constant	 An atom is
a formula of the form p�e��	 	 	 �en��� where e��			�en�� are terms	 In the following�
we assume familiarity with the basic notions of logic programming �Lloyd� �����	

We are particularly interested in the class of Chain Datalog programs� whose
syntax is de�ned below�

DEFINITION �	 �Dong and Ginsburg� ����� A chain rule is a clause of the form

q�X�Z�� q��X�Y���q��Y��Y��� � � � �qk���Yk�Z��

where k � �� and X� Z and each Yi are distinct variables� Here q�X�Z� is the
head and q��X�Y���q��Y��Y��� � � � �qk���Yk�Z� is the body of the rule� The body
becomes q��X�Z� when k � �� A Chain Datalog program is a Datalog program
whose rules are chain rules and whose EDB part consists of facts which are binary�
A goal is of the form � q�a�X�� where a is a constant� X is a variable and q is
an IDB predicate�

Notice that each chain rule contains no constants and has at least one atom in its
body	 Notice also that the �rst argument of a goal is always ground	 Assumptions of
this form are very common in the area of query optimization in logic databases �Ull

man� �����	 For example the magic set transformation is also based on the same
assumption for the goal clause	 More generally� this assumption is also met in most
value propagating Datalog optimizations� and its necessity becomes clearer in later
sections	

The �rst argument of a predicate will often be called its input argument� while
the second one its output argument	

JIIS����tex� ���������	� 	
��� p��



�

DEFINITION �	 A simple Chain Datalog program is one in which every rule has
at most two atoms in its body�

The semantics of �Chain� Datalog programs can be de�ned in accordance to the
semantics of classical logic programming	 The notions of minimum model MPD

of
P�D� where P is a Datalog program andD a database� and immediate consequence
operator TPD� transfer directly �Lloyd� �����	

�� Branching Datalog

In this section we introduce the language Branching Datalog and de�ne its de

notational semantics	 The new language can be viewed as a formalism for de�ning
branching
temporal deductive databases	 However� in this paper Branching Datalog
will be used as the target language of the branching transformation �and not as a
potentially useful new deductive database language�	

Branching Datalog is actually a temporal logic programming language �Orgun
and Ma� ����� Gergatsoulis� �����	 Such languages are usually designed in such a
way so as that they are capable of representing time
dependent information in a
succint way	 Many temporal languages have been proposed di
ering among other
things in the notion of time that they adopt �e	g	 linear or branching� discrete
or continuous� etc	�	 Branching temporal logic programming languages are those
temporal languages in which a moment in time may have more than one imme

diately next moments	 One of the �rst branching temporal languages is Cactus
which we introduced in �Rondogiannis et al	� �����	 The branching �i	e	 tree
like�
structure of time underlying Cactus� makes it especially appropriate for describing
tree algorithms and computations	 Branching Datalog is the subset of Cactus in
which programs do not contain any function symbols	 The importance of Branching
Datalog is that �as we demonstrate in the following sections� it can be used as
the target language of the proposed optimization technique for deductive database
queries	 From a foundational point of view� the results of this paper show that Chain
Datalog queries are equivalent to simpler in structure Branching Datalog queries	

The syntax of Branching Datalog is an extension of the syntax of Datalog	 More
speci�cally� the temporal operators first and nexti� i � N � are added to the syntax
of Datalog	 The declarative reading of these temporal operators will be discussed
shortly	

A temporal reference is a sequence �possibly empty� of temporal operators	 A
canonical temporal reference is of the form first nexti� � � �nextin � where i�� � � � � in �
N and n � �	 An open temporal reference is of the form nexti� � � �nextin � where
i�� � � � � in � N and n � �	 A temporal atom is a classical atom preceded by either a
canonical or an open temporal reference	 A temporal rule is a formula of the form�

A� B�� ����Bm�

where A�B�� ����Bm are temporal atoms and m � �	 A Branching Datalog program
P is a �nite set of temporal rules	 As usual� we consider all predicates de�ned in P

JIIS����tex� ���������	� 	
��� p��



�

as IDB predicates while those appearing in the bodies but not in the head of any
rule in P as EDB predicates	 A set of ground temporal atoms D de�ning the EDBs
is called a database	 The atoms in the database are considered to be independent
of time	

A goal in Branching Datalog is a formula of the form� A whereA is a temporal
atom	 As it will become clear in subsequent sections� the target language of the
transformation algorithm will be a subset of Branching Datalog and the goal clauses
that will be used will consist of a single atom	

Branching Datalog is based on a relatively simple branching�time logic �BTL�	
In BTL� time has an initial moment and �ows towards the future in a tree
like way	
The set of moments in time can be modelled by the set List�N � of lists of natural
numbers N 	 The empty list � � corresponds to the beginning of time and the list �ijt�
�that is� the list with head i� where i � N � and tail t� corresponds to the i
th child
of the moment identi�ed by the list t	 BTL uses the temporal operators first and
nexti� i � N 	 The operator first is used to express the �rst moment in time� while
nexti refers to the i
th child of the current moment in time	 The syntax of BTL
extends the syntax of �rst
order logic with two formation rules� if A is a formula
then so are first A and nexti A	

The semantics of temporal formulas of BTL are given using the notion of branch�
ing temporal interpretation �Rondogiannis et al	� �����	 Branching temporal inter

pretations extend the temporal interpretations of the linear time logic of Chronolog
�Orgun� �����	

DEFINITION �	 A branching temporal interpretation or simply a temporal in

terpretation I of the temporal logic BTL comprises a non�empty set D� called the
domain of the interpretation� together with an element of D for each variable� for
each constant� an element of D� and for each n�ary predicate symbol� an element of
�List�N � � �D

n

��

In the following de�nition� the satisfaction relation j� is de�ned in terms of
temporal interpretations	 j�I�t A denotes that a formula A is true at a moment t
in the temporal interpretation I �

DEFINITION �	 The semantics of the elements of the temporal logic BTL are
given inductively as follows�

�� For any n�ary predicate symbol p and terms e�� � � � � en���

j�I�t p�e�� � � � � en��� i� hI�e��� � � � � I�en���i � I�p��t�

	� j�I�t �A i� it is not the case that j�I�t A


� j�I�t A �B i� j�I�t A and j�I�t B

�� j�I�t �	x�A i� j�I�d�x��t A for all d � D where the interpretation I �d�x� is the
same as I except that the variable x is assigned the element d�

JIIS����tex� ���������	� 	
��� p��



�

�� j�I�t first A i� j�I�� � A


� j�I�t nexti A i� j�I��ijt� A

The Boolean connectives 
�� and�� and the existential quanti�er � are de�ned
in the usual way	

If a formula A is true in a temporal interpretation I at all moments in time�
it is said to be true in I �we write j�I A� and I is called a model of A	 If for all
interpretations I � j�I A� we say that A is valid and write j� A	

It should be noted here that the syntax of BTL allows atoms with temporal
references that are more complicated from the ones we adopt for Branching Datalog	
Moreover it allows temporal references to be applied to whole formulas �and not
just atoms�	 However� it is easy to de�ne axioms and rules of inference for BTL and
use them to demonstrate that every formula of BTL can be transformed into an
equivalent formula in which all temporal references are either canonical or open and
are only applied to atoms	 We do not pursue these issues any further here �however�
the interested reader can consult �Rondogiannis et al	� ������	

�	�	 Semantics of Branching Datalog

The semantics of Branching Datalog are de�ned in terms of temporal Herbrand
interpretations	 A notion that is crucial in the discussion that follows� is that of
canonical instance of a clause� which corresponds to a temporally ground instance
of the clause	 This notion is formalized below	

DEFINITION �	 A canonical temporal atom is a temporal atom whose temporal
reference is canonical� An open temporal atom is a temporal atom whose temporal
reference is open� A canonical temporal clause is a temporal clause whose temporal
atoms are canonical� A canonical temporal instance of a temporal clause C is a
canonical temporal clause C� which can be obtained by applying the same canonical
temporal reference to all open atoms of C�

Let P be a Branching Datalog program and D be a database	 As in Datalog�
the �nite set UPD containing all constant symbols that appear in P � D� called
Herbrand universe� is used to de�ne temporal Herbrand interpretations	 Temporal
Herbrand interpretations can be regarded as subsets of the temporal Herbrand Base
TBPD

of P�D� consisting of all ground canonical temporal atoms whose predicate
symbols appear in P�D and whose arguments are terms in the Herbrand universe
UPD of P �D	 A temporal Herbrand model is a temporal Herbrand interpretation
which is a model of P �D	

The theorems of this section and their proofs are analogous to those of classical
logic programming �Lloyd� ������ or linear
time logic programming �Orgun� �����	
For example� it can be easily shown that the model intersection property holds
for temporal Herbrand models	 Moreover� the intersection of all temporal Herbrand
models� denoted byM�PD�� is a temporal Herbrand model� called the least temporal
Herbrand model	

JIIS����tex� ���������	� 	
��� p��



�

The following theorem says that the least temporal Herbrand model consists
of all ground canonical temporal atoms which are logical consequences of P �D	
Again� the proof of the theorem is an easy extension of the corresponding proof for
classical logic programming	

THEOREM �	 Let P be a Branching Datalog program and D be a database� Then

M�PD� � fA � TBPD
j �P�D� j� Ag�

A �xpoint characterization of the semantics of Branching Datalog programs is
provided using a closure operator that maps temporal Herbrand interpretations
to temporal Herbrand interpretations�

DEFINITION �	 Let P be a Branching Datalog program and D be a database� The
operator TPD � �TBPD � �TBPD is de�ned as follows� if I is a temporal Herbrand

interpretation in �TBPD then TPD�I� � fA jA� B�� � � � �Bn is a canonical ground
instance of a program clause in P�D and fB�� � � � �Bng 
 I g�

It can be easily proved that �TBPD is a complete lattice under the partial order
of set inclusion �
�	 Moreover� TPD is continuous and hence monotonic over the

complete lattice ��TBPD �
�� and therefore TPD has a least �xpoint	 The least
�xpoint of TPD provides a characterization of the minimal Herbrand model of a
Branching Datalog program� as it is stated by the following theorem	

THEOREM �	 Let P be a Branching Datalog program and D be a database� Then

M�PD� � lfp�TPD� � TPD � ��

Notice that although in classical Datalog the least �xpoint of a program is
reached in a �nite number of iterations� this is not the case for Branching Datalog
due to the existence of temporal operators	 This point will be further discussed in
section �	

�� The Transformation Algorithm

The branching
time transformation algorithm takes as input a simple Chain Datalog
program together with a goal clause� and produces as output a Branching Datalog
program and a new goal clause	 Certain remarks are in order�

� The fact that the proposed algorithm is de�ned for simple Chain Datalog pro

grams is not a real restriction because� as it is illustrated by Proposition � that
follows� every Chain Datalog program can be transformed into an equivalent
simple one	

JIIS����tex� ���������	� 	
��� p��



�

� The input to the algorithm is a program together with a goal clause	 This is simi

lar to the spirit of the corresponding transformation in functional programming
�Yaghi� ����� Rondogiannis and Wadge� ����� in which a functional program
contains a top
level de�nition of a special variable result whose value is the
output of the program	 Moreover� this is also similar to the spirit of many well
known optimization techniques for Datalog programs �counting� magic sets�
pushdown method� etc	�	

It should also be noted that the output of the transformation is a Branching Datalog
program in which�

�	 All IDB predicates are unary	

�	 There is at most one IDB atom in the body of each clause in the program�	

The following proposition establishes the equivalence between Chain Datalog and
simple Chain Datalog programs	 Notice that M�PD�p� denotes the set of atoms in
M�PD� whose predicate symbol is p	

PROPOSITION �	 Every Chain Datalog program P can be transformed into a
simple Chain Datalog program Ps such that for every database D and for every
predicate symbol p of P� it holds M�PD�p� � M�Ps

D
�p��

Proof� Let k be the maximum number of atoms in a clause body in P	 We will
prove by induction on k that P can be transformed into a simple Chain Datalog
program Ps such that M�PD�p� � M�Ps

D
�p�	

For k � � the result holds trivially	 Assume that the result holds for some k � �	
We will prove that it also holds for k � �	

Consider a chain rule in P of the form�

p�X�Z�� q��X�Y���q��Y��Y��� � � � �qk���Yk�Z�� ���

This rule can be replaced by the two following ones �in which r is a new predicate
name that we introduce��

p�X�Z� � q��X�Y��� r�Y��Z�� ���

r�Y��Z� � q��Y��Y��� � � � �qk���Yk�Z�� ���

Now� clause ��� has two atoms in its body� while clause ��� has k �one less than clause
��� initially had�	 This procedure is applied to all clauses in P whose bodies contain
k � � atoms	 Let P� be the resulting program	 It is easy to see that M�PD�p� �
M�P�

D
�p� for every predicate symbol p in P	 This is true because the new clauses �of

the form �� that we introduce can be considered as Eureka de�nitions �Proietti and
Pettorossi� ������ while the clauses of the form � are obtained by folding �Tamaki

� Such programs are usually called linear in the deductive database terminology� However we
will avoid using this term� as it may be confused with the term linear which is often used to
characterize time in temporal logic programming�

JIIS����tex� ���������	� 	
��� p�




��

and Sato� ����� Gergatsoulis and Katzouraki� ����� clauses of the form � using
clauses of the form �	

Now in P� all clauses have at most k atoms	 Therefore� we can apply the induction
hypothesis getting the desired result	

Notice that the proof of the above proposition is a constructive one� and therefore
it suggests a method for obtaining a simple Chain Datalog program from a Chain
Datalog one	

We can now formally de�ne the transformation algorithm which takes a simple
Chain Datalog program together with a goal clause as input and returns as output
a Branching Datalog program �of the form discussed above� together with a corre

sponding goal clause	

The algorithm� Let P be a given simple Chain Datalog program and G a given
goal clause	 For each IDB or EDB predicate p in P� two unary IDB predicates p�

and p� are introduced	 The transformation processes each clause in P and the goal
clause G and gives as output a Branching Datalog program P� together with a
new goal clause G�	 When processing a rule of the source program� the algorithm
introduces branching
time operators of the form nexti� i � N 	 It is important to
notice that�

The operators introduced for a given rule are assumed to have di�erent indices
than the operators used for any other rule�

�	 For every EDB predicate p of P� add a new clause to P� of the form�

p��Y�� p�X�Y��p��X��

�	 Each clause in P of the form�

p�X�Y�� q�X�Y��

is transformed into two clauses in P� of the form�

p��Y�� nexti q��Y��
nexti q��X�� p��X��

�	 Each clause in P of the form�

p�X�Y�� q�X�Z�� r�Z�Y��

is transformed into the set of clauses in P��

p��Y�� nexti r��Y��
nexti r��Z�� nextj q��Z��
nextj q��X�� p��X��

where i �� j	

JIIS����tex� ���������	� 	
��� p�	�



��

�	 The goal clause�
� p�a�Y��

is transformed into a new goal clause G��

� first p��Y��

and the following unit clause which is added to P��

first p��a��

Notice that the algorithm introduces for each predicate p in P two unary IDB
predicates p� and p�	 Intuitively� p� corresponds to the �rst argument of p while
p� to the second	 Moreover� the clause introduced in Step �� relates the arguments
of the EDB predicate p to the arguments of the corresponding predicates p� and
p� in P�	 In fact� this clause plays the role of an interface between the program P�

and the database D	 The clauses produced in Steps � and � actually re�ect the �ow
of the argument values during the execution of the source Chain Datalog program	
Finally� in Step � the input argument of the goal clause is actually transferred into
the database through the introduction of a new fact �so as that it will be taken into
account from the beginning of a bottom
up evaluation of the target program�	

EXAMPLE �	 Let P � fI�� I�g be a Chain Datalog program and G be a goal clause�
where�

�G� � p�a� Y��
�I�� p�X� Z� � e�X� Z��
�I�� p�X� Z� � p�X� Y�� e�Y� Z��

and where e is an EDB predicate� Transforming the goal clause G we get�

� first p��Y��
first p��a��

Transforming I� we get�

p��Z� � next� e��Z��
next� e��X� � p��X��

Transforming I� we get�

p��Z� � next� e��Z��
next� e��Y� � next� p��Y��
next� p��X� � p��X��

Finally� for the EDB predicate e we introduce the following clause�

e��Y� � e�X� Y�� e��X��

JIIS����tex� ���������	� 	
��� p�		



��

Certain remarks concerning the intuition behind the use of temporal operators in
the transformation algorithm� are in order	 For each predicate in the initial program
the transformation algorithm separates its input from its output argument by pro

ducing two distinct unary predicates	 The coordination of these two predicates so
as to produce the correct answers is ensured through the use of canonical sequences
of temporal operators �as it will become obvious from the lemmas that constitute
the correctness proof of the transformation�	

In the following section we demonstrate the correctness of the proposed trans

formation algorithm	

�� Correctness Proof

Let P be a simple Chain Datalog program� D a database and � p�a�X� a goal
clause	 The correctness proof of the transformation proceeds as follows� at �rst we
show �see Lemma � below� that if a ground instance p�a�b� of the goal clause is a
logical consequence of P�D then the atom first p��b� is a logical consequence of
P� �D� where P� � f� first p��X�g is obtained by applying the transformation
algorithm to P � f� p�a�X�g	 In order to prove this result we establish a more
general lemma� �Lemma � below�	 The inverse of Lemma � is given as Lemma �	
More speci�cally� we prove that whenever first p��b� is a logical consequence of
P� � D then p�a�b� is a logical consequence of P � D	 Again� we establish this
result by proving the more general Lemma �	 Combining the above results we get
the correctness proof of the transformation algorithm	

LEMMA �	 Let P be a simple Chain Datalog program� D a database and G a
goal clause� Let P� be the Branching Datalog program obtained by applying the
transformation algorithm to P � G� For all predicates p de�ned in P � D� all
canonical temporal references R� and all a�b � UPD� if R p��a� � TP�

D
� � and

p�a�b� � TPD � � then R p��b� � TP�

D
� ��

Proof� We show the above by induction on the approximations of TPD � �	

Induction Basis�
To establish the induction basis� we need to show that if R p��a� � TP�

D
� � and

p�a�b� � TPD � � then R p��b� � TP�

D
� �	 The induction basis trivially holds

because TPD � � � � and thus p�a�b� � TPD � � is false	

Induction Hypothesis�
We assume that if R p��a� � TP�

D
� � and p�a�b� � TPD � k then R p��b� � TP�

D
�

�	 Notice that the induction hypothesis holds for any p in P and any temporal
reference R	

� Lemma � is a result that concerns all the predicates of the source program� It is not obvious
how one can prove Lemma � without resorting to such a more general result�

JIIS����tex� ���������	� 	
��� p�	�



��

Induction Step�
We show that if R p��a� � TP�

D
� � and p�a�b� � TPD � �k � �� then R p��b� �

TP�

D
� �	

Case �� Assume that p�a�b� has been added to TPD � �k � �� because it is a
fact in D	 According to the transformation algorithm� in P� there exists the rule
p��Y� � p�X�Y��p��X�	 Using this and the fact that R p��a� � TP�

D
� � we

conclude that R p��b� � TP�

D
� �	

Case 	� Assume that p�a�b� has been added to TPD � �k � �� using a rule of the
form�

p�X�Y�� q�X�Z�� r�Z�Y�� ���

Then� there exists a constant c such that q�a� c� � TPD � k and r�c�b� � TPD � k	
Consider now the transformation of the above clause ��� in program P�	 The

new clauses obtained are�

p��Y�� nexti r��Y�� ���

nexti r��Z�� nextj q��Z�� ���

nextj q��X�� p��X�� ���

Using the assumption that R p��a� � TP�

D
� � together with clause ��� above�

we get that R nextj q��a� � TP�

D
� �	 Given this� we can now apply the induction

hypothesis on q and on temporal reference R nextj � which gives�

Since R nextj q��a� � TP�

D
� � and q�a� c� � TPD � k then R nextj q��c� �

TP�

D
� �	

Using now the fact that R nextj q��c� � TP�

D
� � together with clause ��� we get

R nexti r��c� � TP�

D
� �	 Given this� we can now apply the induction hypothesis

on r which gives�

Since R nexti r��c� � TP�

D
� � and r�c�b� � TPD � k then R nexti r��b� �

TP�

D
� �	

Finally� using the fact that R nexti r��b� � TP�

D
� � together with clause ���� we

get the desired result which is that R p��b� � TP�

D
� �	

Case 
� Assume that p�a�b� has been added to TPD � �k � �� using a rule of the
form�

p�X�Y�� q�X�Y�� ���

The proof of this Case is similar �and actually simpler� to that for Case �	

LEMMA �	 Let P be a simple Chain Datalog program� D be a database and �
p�a�X� be a goal clause� Let P� � f� first p��X�g be the output obtained by
applying the tranformation algorithm to P � f� p�a�X�g� If p�a�b� � TPD � �
then first p��b� � TP�

D
� ��

JIIS����tex� ���������	� 	
��� p�	�



��

Proof� Since by transforming the goal clause� the fact first p��a� is added to
P�
D
� this lemma is a special case of Lemma �	

We now show the following lemma which is the �inverse� of Lemma ��

LEMMA �	 Let P be a simple Chain Datalog program� D a database and G a
goal clause� Let P� be the Branching Datalog program obtained by applying the
transformation algorithm to P � G� For all predicates p in P � D� for all canonical
temporal references R� and for all b � UPD� if R p��b� � TP�

D
� � then there exists

a constant a � UPD such that p�a�b� � TPD � � and R p��a� � TP�

D
� ��

Proof�
We show the above by induction on the approximations of TP�

D
� �	

Induction Basis�
It is convenient to show the induction basis for both TP�

D
� � and TP�

D
� �	 We

therefore will show that� �a� if R p��b� � TP�

D
� � then there exists a constant a

such that p�a�b� � TPD � � and R p��a� � TP�

D
� �� and �b� if R p��b� � TP�

D
� �

then there exists a constant a such that p�a�b� � TPD � � and R p��a� � TP�

D
� �	

The statement �a� vacuously holds because TP�

D
� � � � and thus R p��b� �

TP�

D
� � is false	 For �b�� R p��b� � TP�

D
� � is also false because �as it can be easily

seen from the de�nition of the transformation algorithm� in TP�

D
� �� besides the

atoms in D� there only belongs one temporal atom whose predicate is an input one	
This atom has been obtained by transforming the goal clause	 Therefore� the basis
case holds vacuously	

Induction Hypothesis�
If R p��b� � TP�

D
� k then there exists a constant a such that p�a�b� � TPD � �

and R p��a� � TP�

D
� k	

Induction Step�
We show that if R p��b� � TP�

D
� �k � �� then there exists a constant a such that

p�a�b� � TPD � � and R p��a� � TP�

D
� �k � ��	

Case �� Assume now that there exists in P a rule of the form�

p�X�Y�� q�X�Z�� r�Z�Y�� ���

which has been transformed into the clauses�

p��Y�� nexti r��Y�� ���

nexti r��Z�� nextj q��Z�� ���

nextj q��X�� p��X�� ���

in P�	 Assume that R p��b� has been introduced in TP�

D
� �k � �� by clause ���

above	 Thus R nexti r��b� � TP�

D
� k	 By the induction hypothesis� we get that

there exists a constant c such that r�c�b� � TPD � � and R nexti r��c� � TP�

D
� k	

JIIS����tex� ���������	� 	
��� p�	�



��

Notice now that the only way that R nexti r��c� � TP�

D
� k can have been

obtained is by using clause ��� above �all other clauses de�ning r�� have a di
er

ent index in the next operator�	 Therefore� using clause ��� above� we get that�

R nextj q��c� � TP�

D
� �k � �� which also means that R nextj q��c� � TP�

D
� k	

Using the induction hypothesis� we get that there exists a constant a such that
q�a� c� � TPD � � and R nextj q��a� � TP�

D
� k	 But then� using clause ��� above

as before we get R p��a� � TP�

D
� �k � ��� which implies that R p��a� � TP�

D
� k	

Moreover� since q�a� c� � TPD � � and r�c�b� � TPD � � from ��� we also get
p�a�b� � TPD � �	 Using these� we derive the desired result	
Case 	� Assume that in P there exists a rule of the form�

p�X�Y�� q�X�Y�� ���

The proof of this Case is similar �and actually simpler� to that for Case �	
Case 
� Assume that in P there exists an EDB predicate p and therefore a clause
of the form�

p��Y�� p�X�Y��p��X�� ���

has been intoduced in P�	 Assume now that R p��b� has been introduced in TP�

D
�

�k � �� by clause ��� above	 Then there exists a constant a such that p�a�b� �
TPD � �� and R p��a� � TP�

D
� k	

This concludes the proof of the particular case and of the lemma	

LEMMA �	 Let P be a simple Chain Datalog program� D be a database and �
p�a�X� be a goal clause� Let P� � f� first p��X�g be the output obtained by
applying the tranformation algorithm to P�f� p�a�X�g� If first p��b� � TP�

D
� �

then p�a�b� � TPD � ��
Proof� From Lemma � we have that there is a constant c such that p�c�b� �

TPD � � and first p��c� � TP�

D
� �	 But as the only instance of first p��X� in

TP�

D
� � is first p��a� then c � a	

THEOREM �	 Let P be a simple Chain Datalog program� D be a database and
� p�a�X� be a goal clause� Let P� � f� first p��X�g be the output obtained by
applying the tranformation algorithm to P � f� p�a�X�g� Then first p��b� �
TP�

D
� � i� p�a�b� � TPD � ��

Proof� It is an immediate consequence of lemmas � and �	

� It can be easily seen that Case � of the induction step is only applicable for values of k which
are greater than ��

JIIS����tex� ���������	� 	
��� p�	�



��

�� Termination of Bottom	up Evaluation

It is customary in the deductive database area to investigate bottom
up evaluation
strategies for Datalog programs �Naughton and Ramakrishnan� �����	 In particular�
queries for such programs can be evaluated in a bottom
up way using essentially
the de�nition of the operator TPD	 As the Herbrand universe of a Datalog program
is �nite� the calculation of its least �xpoint is completed in a �nite number of steps	

Branching Datalog programs can also be evaluated bottom
up through the use
of the TPD operator of De�nition �	 However� as the temporal Herbrand base of
a Branching Datalog program is �in general� in�nite� the calculation of the least
�xpoint may not terminate in a �nite number of iterations	

Fortunately� in the case of the Branching Datalog programs obtained by the
transformation� the calculation of the answers to the goal clause requires only a �nite
number of iterations	 In fact� the number of steps for this calculation is bounded by
a number which depends on certain characteristics of the program �e	g	 the number
of unit clauses in the database of P� the number of di
erent data constants in the
database� etc	�	 In order to prove this claim we use the results of �Chomicki� �����
which refer to the language DatalognS 	

For this� we transform the Branching Datalog program �together with the corre

sponding goal clause�� that has been obtained by the branching
time transformation
algorithm� into a DatalognS program	 This transformation is de�ned as follows�

� Replace every IDB atom of the form p�e� with p�T� e�	

� Replace every IDB atom of the form nexti p�e� with p��i�T�� e�	

� Replace every IDB atom of the form first p�e� with p���� e�	

EXAMPLE �	 Consider the following Chain Datalog program�

p�X�Y�� e�X�Y��

where e is an EDB predicate� and the goal clause

� p�a�Y��

The output of the branching�time transformation is�

� first p��Y��
first p��a��
p��Y�� next� e��Y��
next� e��X�� p��X��
e��Y�� e�X�Y�� e��X��

JIIS����tex� ���������	� 	
��� p�	�



��

The above can be transformed into the following DatalognS program together with a
goal clause�

� p�����Y��
p�����a��
p��T�Y�� e�����T��Y��
e�����T��X�� p��T�X��
e��T�Y�� e�X�Y�� e��T�X��

The following lemma demonstrates the equivalence between the Branching Data

log program and the corresponding DatalognS program	

LEMMA �	 Let P� be a Branching Datalog program that results from the branching�
time transformation and D be a database� Let PnS be the DatalognS program that
results from the above transformation� Then� for all k � N �

first nexti� � � � nextin p�a� � TP�

D
� k i� p��in� � � � � i��� a� � T

P
nS

D

� k�

Proof� The proof is obtained by a straightforward induction on k	

In �Chomicki� ������ J	 Chomicki demonstrates that for DatalognS programs
there exists a bound on the number of iterations of the immediate consequence
operator to produce all answers to a speci�c class of queries �which include the
queries used in our case�	 In particular� given a DatalognS programP and a database
D� J	 Chomicki derives a closed formula that can be used to easily calculate this
bound based on certain characteristics of P�D	

This result is used to derive the following theorem�

THEOREM �	 Let P be a simple Chain Datalog program� � p�a�X� be a goal
clause� and P� be the Branching Datalog program obtained by applying the branching�
time transformation algorithm to P � f� p�a�X�g� Then for every database D
there is a natural number k �easily determinable from the characteristics of P�D�
such that all the answers to the goal clause � first p��X� can be computed
�bottom�up� in at most k iterations�

Proof� As discussed above� P� can be transformed into a DatalognS program
PnS 	 As it is shown in �Chomicki� ������ for every DatalognS program PnS there
is a natural number m�PnS� such that all the answers to a goal clause can be
computed in m�PnS� iterations	 Because of Lemma � the corresponding answers to
the goal clauses in both programs are obtained in the same number of steps �i	e	
k � m�PnS��	 This completes the proof of the theorem	

The above theorem is a somewhat surprising one	 In general the immediate
consequence operator for Branching Datalog programs does not terminate	 However
the above theorem suggests that all answers to a given query will be obtained in a
�nite number of iterations	

It should be noted that Branching Datalog programs can also be executed top

down using a resolution
type proof procedure �Rondogiannis et al	� �����	 However�

JIIS����tex� ���������	� 	
��� p�	�



��

a further discussion of proof procedures for Branching Datalog is outside the scope
of the present paper	


� Improving the Transformation

In this section we show that the branching
time transformation technique can be
further improved	 In particular� a� unary predicates corresponding to EDB atoms
in the initial program can be eliminated b� some of the operators nexti introduced
by the transformation can be eliminated� and c� temporal operators concerning left
recursive calls of the head predicate of a clause can be eliminated	

a� Elimination of unary predicates corresponding to EDB atoms� All
unary predicates in the resulting program that correspond to EDB predicates of the
source program can be eliminated using unfolding �Gergatsoulis and Spyropoulos�
�����	 In particular� the predicates in the heads of the clauses added to P� in step
� of the algorithm �which are output predicates� appear only in the bodies of �some
of� the clauses in P� added in steps �
�	 All the clauses containing these body atoms
can be unfolded using the clauses introduced in step �	 The clauses obtained by the
above unfolding steps contain occurrences of input predicates corresponding to EDB
predicates	 These can be further unfolded resulting in the complete elimination of
all unary predicates corresponding to EDB predicates of the initial program	 Notice
that all temporal operators corresponding to EDB atoms in the initial program are
also eliminated	

EXAMPLE �	 Let P� be the program obtained in Example 	�

� first p��Y��
�C�� first p��a��
�C�� p��Z� � next� e��Z��
�C�� next� e��X� � p��X��
�C�� p��Z� � next� e��Z��
�C�� next� e��Y� � next� p��Y��
�C�� next� p��X� � p��X��
�C�� e��Y� � e�X� Y�� e��X��

Then unfolding C� using C	 we get�

�C�� p��Z� � e�X� Z�� next� e��X��

Unfolding further C
 using C� we get�

�C�� p��Z� � e�X� Z�� p��X��

In a similar way� after performing all the unfoldings described above� we get the
following program�

JIIS����tex� ���������	� 	
��� p�	�



��

� first p��Y��
first p��a��
p��Z� � e�X� Z�� p��X��
p��Z� � e�X� Z�� next� p��X��
next� p��X� � p��X��

b� Elimination of redundant next operators� The number of di
erent nexti
operators introduced by the transformation algorithm when applied to a program
P� is equal to the total number of atoms in the bodies of all clauses in P	 However�
some of these operators are redundant in the �nal Branching Datalog program	

The generation of redundant next operators can be avoided by rede�ning steps
� and � of the transformation algorithm as follows�

��	 Each clause in P of the form�

p�X�Y�� q�X�Y��

is transformed into two clauses in P� of the form�

p��Y�� Op q��Y��
Op q��X�� p��X��

where Op is nexti if there is another body atom in P � fGg� with the same
predicate symbol q	 Otherwise� Op is empty	

��	 Each non unit clause in P of the form�

p�X�Y�� q�X�Z�� r�Z�Y��

is transformed into the set of clauses�

p��Y�� Op� r��Y��
Op� r��Z�� Op� q��Z��
Op� q��X�� p��X��

where Op� is nexti if there is another body atom in P � fGg� with the same
predicate symbol r� otherwise Op� is empty	 Op� is nextj if there is an another
body atom in a clause in P� with the same predicate symbol q� otherwise Op�
is empty	

Notice that in steps ���� and ���� the call in the goal G counts as an appear

ance of the corresponding predicate in a body atom	 It is therefore clear that the
improvement proposed here refers to some of the predicates �either non
recursive
or implicitly recursive� in particular those appearing only once in the bodies of the
clauses in P and the goal G	

JIIS����tex� ���������	� 	
��� p�	




��

c� Elimination of temporal operators concerning left recursive calls�
Temporal operators that concern left recursive calls can be eliminated	 More specif

ically� each non unit clause in P of the form�

p�X�Y�� p�X�Z�� r�Z�Y��

is transformed into the set of clauses�

p��Y�� nexti r��Y��
nexti r��Z�� p��Z��

EXAMPLE �	 The program of Example � after applying the elimination of temporal
operators concerning left recursion and the elimination of predicates corresponding
to EDB atoms� results in the much simpler program�

� first p��Y��
first p��a��
p��Z� � e�X� Z�� p��X��
p��Z� � e�X� Z�� p��X��

The correctness of all the above transformations can be easily demonstrated
by performing a more detailed case analysis in the proof of Section �	 We believe
that there exist other interesting optimizations that are applicable to the branching
transformation	 For example� we believe that there exists a corresponding optimiza

tion concerning right recursive clauses	 However� we have not been able to derive
such an optimization �the proofs do not appear to extend easily to cover such a
case�	 We are currently further investigating such a possibility	

It is important to note that all the above optimizations could actually be embed

ded inside the transformation algorithm	 However� we have preferred to list them
separately in order to make clearer both the presentation and the correctness proof
of the transformation	

As a �nal remark to this section it is worth mentioning that the optimizations
de�ned above are quite e
ective� a large class of Chain Datalog programs can be
transformed into Branching Datalog ones that contain very few next operators �or
in many cases no temporal operators at all�	 Examples of this phenomenon will be
given in the next section	

�� Related Work

The transformation presented in this paper belongs and contributes to the research
area of query optimization for deductive database systems	 The particular area
is far from new� many important results have been obtained during the last ��
years and the associated bibliography is very extensive	 In the rest of this section
we describe the connections between the branching transformation and methods

JIIS����tex� ���������	� 	
��� p���



��

that have been developed in the deductive query optimization domain	 Moreover�
we provide certain examples that demonstrate that the branching transformation
is indeed a promising one	 However� the comparison attempted in this section is
indeed at a very initial stage	 More experiments are clearly needed and in order
to perform a fair comparison� one needs to implement all the techniques presented
below� optimize them� and test them in a large number of examples	 Such a detailed
experimentation is clearly outside the scope of the present paper	 The examples
presented below have been chosen in such a way so as to emphasize certain �strong
points� of the branching transformation	

The branching transformation belongs to a family of optimization techniques for
deductive databases that are based on the idea of propagating the input values of
the top level goal in order to restrict the generation of atoms in the bottom
up com

putation	 Such techniques are the counting technique �Sacc�a and Zaniolo� ������ the
pushdown approach �Greco et al	� ������ and the magic sets transformation �Beeri
and Ramakrishnan� ����� Sippu and Soisalon
Soininen� �����	

The magic sets technique is one of the most well
known transformations for opti

mizing Datalog queries	 In this technique� for each IDB predicate a magic predicate
is introduced	 The arguments of the magic predicate related to an IDB predicate p�
correspond to the bound �input� arguments of p	 The role of the magic predicates
is to propagate the values of the bound arguments� in order to restrict the set of
atoms produced in a bottom
up computation	 Consider the following program�

� p�a�Y��
p�X�Y�� e�X�Y��
p�X�Y�� p�X�Z��e�Z�Y��

The magic transformation of the above program produces as output the following
program�

� p�a�Y��
m p�a��
m p�X�� sup����X��
sup����X�� m p�X��
sup����X�� m p�X��
sup����X�Z�� sup����X�� p�X�Z��
p�X�Y�� sup����X��e�X�Y��
p�X�Y�� sup����X�Z��e�Z�Y��

The target program that results from the branching transformation �as demon

strated in Example �� is the following�

� first p��Y��
first p��a��
p��Z� � e�X� Z�� p��X��
p��Z� � e�X� Z�� p��X��

JIIS����tex� ���������	� 	
��� p��	



��

Notice that the above program is actually a Datalog one �the first operator
can be removed without a
ecting the answer set�	 The above program is a much
more e�cient one than the program produced by the magic approach �in which
the introduction of the magic predicates has almost no e
ect�	 A magic program
that could compete with the above one could only be produced if one applied ad

vanced optimization techniques concerning left linear recursion �as those described
in Chapter �� of �Ullman� ������	

In the counting approach integer indices are used in order to encode the structure
of the computation used to generate an atom	 Similarly� in the branching transfor

mation sequences of operators are employed in order to control the generation of
results	 However� to our knowledge� the counting approach has never before been
extended to apply to the whole class of chain queries	 Counting was initially de�ned
for certain restricted classes of queries �Ullman� ����� Haddad and Naughton� �����	
The method was later extended to generalized counting which covers a signi�cantly
broader class of queries �Sacc�a and Zaniolo� �����	 More speci�cally� the generalized
counting approach covers all those queries that have the binding�passing property
�BPP��Sacc�a and Zaniolo� �����	 Intuitively� BPP guarantees that �bindings can
be passed to any level of recursion�	 Although broad� the class of BPP queries does
not include all the Chain Datalog ones	 For example� consider the program�

� p�a�Y��
p�X�Y�� e�X�Y��
p�X�Y�� p�X�Z��p�Z�Y��

which is a double recursive version of the well known transitive closure problem	 It
can be shown that the above program does not satisfy the BPP	 More speci�cally�
the binding graph �Sacc�a and Zaniolo� ����� of the program contains a node whose
set of bound arguments is empty	 There exist however chain programs that are
transformable by the generalized counting technique	 Consider for example the
program�

� p�a�Y��
p�X�Z�� p�X�Y��e�Y�Z��
p�X�Z�� p�X�Y��f�Y�Z��
p�X�Z�� g�X�Z��

in which e� f and g are EDB predicates	 The transformation of the above query
under the generalized counting scheme is the following�

p�a�Y�� p��������Y��
cnt�p��������a��
cnt�p��J���	
K�H�X�� cnt�p��J�K�H�X��
cnt�p��J���	
K���H�X�� cnt�p��J�K�H�X��
p��J���K�	�H�Z�� p��J�K�H�Y��e�Y�Z��
p��J���
K����	�H�Z�� p��J�K�H�Y��f�Y�Z��
p��J�K�H�Z�� cnt�p��J�K�H�X��g�X�Z��

JIIS����tex� ���������	� 	
��� p���



��

On the other hand� the corresponding program obtained by the branching transfor

mation �and optimized according to section ��� is the following�

� first p��Y��
first p��a��
p��Z�� g�X�Z�� g��X��
g��X�� p��X��
p��Z�� e�Y�Z��e��Y��
e��Y�� p��Y��
p��Z�� f�Y�Z��f��Y��
f��Y�� p��Y��

It is important to note that in the above program all next operators have been
eliminated �and in this case the operator first is actually useless and can also be
eliminated�	 In other words� the program produced is in fact a classical Datalog
program	 On the other hand� the counting approach introduces extra arguments
playing the role of counters �of which two are actually used in this example� and
therefore� the resulting program is much less e�cient	

In �Greco et al	� ������ an approach which optimizes chain programs� called
pushdown method� is proposed	 The pushdown method is based on the relationship
between chain queries and context
free languages	 More speci�cally� the method is
based on the fact that a chain query can be associated to a context
free language	
The relationship between context
free languages and pushdown automata is then
used to rewrite the queries in a form suitable for bottom up evaluation	

Using the pushdown method� the same example is transformed as follows�

� q�Y� � ���
q�a��p���
q�Y�T�� q�X��p�T���g�X� Y��
q�Y��p�e�T��� q�Y��p�T���
q�Y��p�f�T��� q�Y��p�T���
q�Y�T�� q�X��e�T���e�X�Y��
q�Y�T�� q�X��f�T���f�X�Y��

The program obtained by the pushdown method is clearly less simple than the
one produced by the branching transformation �as it still contains lists of constants�	

Generally� the pushdown method covers the same class of Datalog programs as
the branching transformation technique� namely the Chain Datalog programs	 How

ever� it di
ers from our transformation in the following� a� The pushdown method
adds an extra argument to IDB predicates	 This extra argument is a list of constants	
Our method uses temporal operators instead	 b� The program obtained by the
pushdown method has only one IDB predicate� while the programs obtained by the
branching transformation use several IDB predicates �in fact two IDB predicates
for every di
erent predicate of the initial program�	 The use of di
erent predicates
often results in more e�cient evaluation of the programs	 c� More than one constant

JIIS����tex� ���������	� 	
��� p���



��

symbols are often put in the list argument in the program obtained by the pushdown
method	 On the other hand� in the branching transformation technique� at most one
temporal operator is applied to each atom	

Our transformation algorithm also relates to techniques that aim at transforming
non
linear into linear Datalog programs �Afrati et al	� �����	 However� if the target
language is �classical� Datalog� then the whole class of chain queries cannot be
linearized �Afrati and Cosmadakis� �����	


� Conclusions

In this paper� we introduce a transformation algorithm from Chain Datalog pro

grams to Branching Datalog ones	 The programs obtained have the following inter

esting properties� a� All IDB predicates are unary� and b� Every rule has at most
one IDB atom in its body	

There are certain points however which we believe require further investigation�

Implementation Issues� Apart from its theoretical interest� the transformation
algorithm can be viewed as the basis of new evaluation strategies for Chain Datalog
programs	 An interesting point for future investigation would be to consider the
performance of the proposed transformation algorithm when compared with the
standard procedures for implementing Chain Datalog �or simply Datalog� programs	

Extension of the Transformation� Clearly� the transformation does not apply
directly to general Datalog programs �that are not in chain form�	 We believe
however that the algorithm can be extended to larger subsets of Datalog	 We are
currently investigating such a possibility	

Acknowledgements

The authors would like to thank F	 Afrati� C	 Nomikos and P	 Potikas for their
helpful comments and suggestions	 We would also like to thank the anonymous
reviewers for all their insightful comments �in particular� the comments of one of
the reviewers motivated us in introducing the optimization of left recursion�	

References

Afrati� F� and S� Cosmadakis� �	
	� �Expressiveness of Restricted Recursive Queries�� In� Proc�
��st ACM Symp� on Theory of Computing� pp� ��
�����

Afrati� F�� M� Gergatsoulis� and M� Katzouraki� �		�� �On Transformations into Linear Database
Logic Programs�� In� D� Bj�rner� M� Broy� and I� Pottosin �eds��� Perspectives of Systems
Informatics 	PSI���
� Proceedings� pp� �

�����

Afrati� F� and C� H� Papadimitriou� �	
�� �The parallel complexity of simple chain queries�� In�
Proc� �th ACM Symposium on Principles of Database Systems� pp� ������
�

JIIS����tex� ���������	� 	
��� p���



��

Afrati� F� and C� H� Papadimitriou� �		
� �Parallel complexity of simple logic programs�� Journal
of the ACM ���
�� 
	��	���

Baudinet� M�� J� Chomicki� and P� Wolper� �		
� �Temporal Deductive Databases�� In� L� F� del
Cerro and M� Penttonen �eds��� Temporal Databases� Theory� Design� and Implementation� The
Benjamin�Cummings Publishing Company� Inc� pp� �	��
���

Beeri� C� and R� Ramakrishnan� �		�� �On the power of magic�� The Journal of Logic Programming
�������
 � ��� �����		�

Chomicki� J�� �		�� �Depth�Bounded Bottom�Up evaluation of Logic Programs�� The Journal of
Logic Programming ������ ��
��

Dong� G� and S� Ginsburg� �		�� �On Decompositions of Chain Datalog Programs into P �Left�
�Linear ��Rule Components�� The Journal of Logic Programming ���
�� ��
��
��

Du� W� and W� W� Wadge� �		�� �The Eductive Implementation of a Three�dimensional
Spreadsheet�� Software�Practice and Experience ������� ��	�������

Faustini� A� and W� Wadge� �	
�� �An Eductive Interpreter for the Language pLucid�� In� Proceed�
ings of the SIGPLAN �� Conference on Interpreters and Interpretive Techniques 	SIGPLAN
Notices ��	�

� pp� 
��	��

Gergatsoulis� M�� ����� �Temporal and Modal Logic Programming Languages�� In� A� Kent and
J� G� Williams �eds��� Encyclopedia of Microcomputers� Vol� ��� Suppl� �� Marcel Decker� Inc�
�to appear��

Gergatsoulis� M� and M� Katzouraki� �		�� �Unfold�fold transformations for de�nite clause pro�
grams�� In� M� Hermenegildo and J� Penjam �eds��� Programming Language Implementation
and Logic Programming 	PLILP���
� Proceedings� pp� 
���
���

Gergatsoulis� M� and C� Spyropoulos� �		
� �Transformation Techniques for Branching�time Logic
Programs�� In� W� W� Wadge �ed��� Proc� of the ��th International Symposium on Languages
for Intensional Programming 	ISLIP���
� May ���� Palo Alto� California� USA� pp� �
��
�

Greco� S�� D� Sacc�a� and C� Zaniolo� �			� �Grammars and Automata to Optimize Chain Logic
Queries�� International Journal on Foundations of Computer Science ���
�� 
�	�
���

Haddad� R� W� and J� F� Naughton� �	

� �Counting Methods for Cyclic Relations�� In� Proc� �th
ACM SIGACT�SIGMOD�SIGART Symposium on Principles of Database Systems� pp� 


�
���

Jones� S� L� P�� �	
�� The Implementation of Functional Programming Languages� Prentice�Hall�
Lloyd� J� W�� �	
�� Foundations of Logic Programming� Springer�Verlag�
Naughton� J� F� and R� Ramakrishnan� �		�� �Bottom�up Evaluation of Logic Programs�� In� J� L�

Lasser and G� Plotkin �eds��� Computational Logic� Essays in the Honor of Alan Robinson� MIT
Press� pp� �����		�

Orgun� M� A�� �		�� �Intensional logic programming�� Ph�D� thesis� Dept� of Computer Science�
University of Victoria� Canada�

Orgun� M� A�� �		�� �On temporal deductive databases�� Computational Intelligence������ �
����	�
Orgun� M� A� and W� Ma� �		�� �An overview of Temporal and Modal Logic Programming�� In�

D� M� Gabbay and H� J� Ohlbach �eds��� Proc� of the First International Conference on Temporal
Logics 	ICTL���
� pp� ������	�

Proietti� M� and A� Pettorossi� �		�� �Synthesis of Eureka Predicates for developing logic programs��
In� Proc� of the 
rd European Symposium on Programming� pp� 
���
���

Rondogiannis� P�� M� Gergatsoulis� and T� Panayiotopoulos� �		
� �Branching�time logic program�
ming� The language Cactus and its applications�� Computer Languages ���
�� ������
�

Rondogiannis� P� and W� W� Wadge� �		�� �First�order functional languages and intensional logic��
Journal of Functional Programming ����� �
�����

Rondogiannis� P� and W� W� Wadge� �			� �Higher�Order Functional Languages and Intensional
Logic�� Journal of Functional Programming 	���� ��������

Sacc�a� D� and C� Zaniolo� �	

� �The generalized counting method for recursive logic queries��
Theoretical Computer Science ����� �
������

Sippu� S� and E� Soisalon�Soininen� �		�� �An analysis of Magic Sets and Related Optimization
Strategies for Logic Queries�� Journal of the ACM ������ �������

�

JIIS����tex� ���������	� 	
��� p���



��

Tamaki� H� and T� Sato� �	
�� �Unfold�Fold Transformations of Logic Programs�� In� S���A� Tarnlund
�ed��� Proc� of the Second International Conference on Logic Programming� pp� �����

�

Ullman� J� D�� �	
	� Principles of Database and Knowledge�Base Systems� Vol� I � II� Computer
Science Press�

Ullman� J� D� and A� V� Gelder� �	

� �Parallel complexity of logical query programs�� Algorithmica
�� �����

Wadge� W� W�� �		�� �Higher�Order Lucid�� In� Proceedings of the Fourth International Symposium
on Lucid and Intensional Programming�

Yaghi� A�� �	
�� �The intensional implementation technique for functional languages�� Ph�D� thesis�
Dept� of Computer Science� University of Warwick� Coventry� UK�

JIIS����tex� ���������	� 	
��� p���


