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� Introduction

First�order �algebraic� query languages lack recursion and� as a consequence�
have limited expressive power� Datalog� the language of Horn logic without
function symbols� embeds recursion and therefore allows to express a far wider
class of queries� However� queries expressed in Datalog are harder to evaluate
than classical �rst�order queries �from the point of view of parallel complexity��
whereas �rst�order queries can be solved in deterministic log�space �namely by
a deterministic Turing machine using a workspace whose size is log n� where
n is the dimension of the problem� i�e� the number of the relations tuples in
the underlying database�� Datalog programs are log�space complete for P in
general �namely� Datalog queries cannot be solved in deterministic log�space�
unless P � log�space which is believed to be highly unlikely �	
��� Indeed� the
prototypical P�log�space complete path system accessibility problem �
� can be
encoded by the Datalog program

access�X�� source�X��

access�X�� access�Y��� access�Y��� triple�Y�� Y��X��

The predicates source and triple represent� respectively� source nodes and
accessibility conditions� in particular� the predicate triple�Y�� Y��X� represents
that if Y�� Y� are accessible from the source nodes� then so is X�

As a consequence many e�orts have been devoted to detect special classes
of Datalog programs for which e
cient evaluation methods and optimisation
techniques exist ��
���� These classes are de�ned by imposing syntactic re�
strictions on the Datalog programs belonging to them� following two main
approaches�

� restricting the width �number of arguments� of the predicates de�ned by the
Datalog programs �as� e�g�� in ���	�������

� imposing the linearity condition on the clauses of Datalog programs that
at most one non�database predicate is allowed in the body of each clause
de�ned by the Datalog program �as� e�g�� in �	��	�����	����

Linear programs have been widely studied �e�g� see �	�	����� both as concerns
their computational complexity and the e
ciency of algorithms for computing
their consequences� In particular� it has been shown that all Datalog programs
currently known to be P�complete require non�linear clauses� because in each
case there is a �rst�order reduction from path system accessibility to such
Datalog programs �e�g� see �		�������� Finally� it is known ��	�� see section � for
more details� that there are Datalog programs inNC� which are not equivalent
to any linear program� these are Datalog programs corresponding to a special
class of �recursive� queries� referred to in the literature as chain queries �������
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In this context� an interesting question is whether syntactic restrictions on
classes of Datalog programs necessarily restrict their expressive power� In par�
ticular� linearisability of Datalog programs�recursive queries �i�e�� the ques�
tion whether queries expressed by certain programs can be still expressed
within the class of linear programs� has been widely studied in the �deduc�
tive� database community� e�g� by �������	���

As an example� consider the following Datalog program which checks if there
is a path joining two nodes of a graph�

path�X�Y �� arc�X�Y ��

path�X�Y �� path�X�Z�� path�Z� Y ��

Here arc is a database predicate� This program is not linear� whereas the
equivalent Datalog program�

path�X�Y �� arc�X�Y ��

path�X�Y �� arc�X�Z�� path�Z� Y ��

is� Thus� in this example� imposing the linearity condition did not prevent
the �path query� to be expressible� That is� the �path query� can also be
expressed within the class of linear programs� Thus� a natural question is� Are
there �syntactic� classes of Datalog programs that have this property� that for
any query expressed by a program in the class� there is a linear program which
also expresses the query� In this paper� we answer this question a
rmatively
for two special classes of Datalog programs�recursive queries� More in detail�
we investigate linearisability of piecewise linear programs and chain queries�
We prove that piecewise linear programs are always linearisable� Moreover�
whereas it is known that chain queries are not linearisable in general �	�� we
prove that regular and pseudo�regular chain queries always are� To the best of
our knowledge� the class of pseudo�regular chain queries has not been studied
elsewhere in the literature�

We prove all linearisability results constructively� by showing how to translate
any given programs�queries into corresponding linear Datalog programs� In
particular� we transform piecewise linear programs into linear programs via a
procedure which relies heavily upon conventional logic program transforma�
tion techniques ��	����� such as fold� unfold and Eureka de�nition introduction
operations� The correctness of this procedure is a direct consequence of the
fact that these transformation techniques are equivalence preserving�

The rest of the paper is organised as follows� Section � gives some prelimi�
nary notions� Section � and � present� respectively� linearisability results for
piecewise linear programs and some classes of chain queries� namely regular
chain queries and the newly introduced pseudo�regular chain queries� Section �
reviews non�linearisability results for some other classes of chain queries� Sec�
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tion � concludes and discusses future work�

Some of the material in this paper is a revised and extended version of material
from ������

� Preliminaries

Suppose that we have four disjoint� countably in�nite sets of symbols namely
constants� variables� function symbols of all arities and predicates of all arities�
A term is either a constant or a variable or an expression of the form f�u�
where f is a function symbol of arity n and u is a n�vector of terms� An atom
is an expression of the form p�u�� where p is a predicate symbol of arity n
and u is a n�vector of terms� A ground atom is an atom without variables� Let
A�� A�� � � � � Ak� with k � �� be atoms� Then A� � A�� � � � � An is a Horn clause
or a rule �in the following we will call it simply a clause�� A� is referred to
as the head and A�� � � � � An as the body of the clause� A clause with an empty
body �n � �� is referred to as a unit clause� A clause with a non�empty body
�n � �� is referred to as a non�unit clause� A de�nite logic program is a set
of Horn clauses� If p is the predicate in the head of a clause then the clause
de�nes or is a de�nition for p�

Let P be a de�nite logic program� Then the Herbrand Universe UP of P
is the set of all ground terms that can be formed using the constant and
function symbols that appear in P � The Herbrand base HBP of P is the set of
ground atoms whose predicate symbols appear in P and whose arguments are
terms in UP � A Herbrand interpretation for P is a subset of HBP � A Herbrand
model for P is a Herbrand interpretation which satis�es all clauses in P � The
meaning M�P � of a de�nite logic program P is de�ned as M�P � given by the
least Herbrand model of P � Two de�nite logic programs are equivalent if they
have the same meaning� If S is a set of predicate symbols� then the meaning
MS�P � of a de�nite logic program P restricted to the predicates in S is de�ned
as MS�P � � M�P � � fAjA is a ground atom whose predicate is in Sg�

��� Database Queries and Datalog Programs

A relational �or extensional� database of arity �a�� � � � an�� where each ai� with
	 � i � n� is a non�negative integer� is a tuple �D� r�� � � � � rn� withD a �nite set
�called the domain� and ri� i � 	� � � � � n� a relation of arity ai overD� A relation
r of arity a over the domain D is a �nite subset of Da i�e� its elements are a�
tuples of elements of D� In logic programming terms� an extensional database
is represented by a ��nite� set of unit clauses without function symbols� Under
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this formulation� the �implicit� domainD is the Herbrand Universe of the set of
unit clauses� The predicates occurring in an extensional database are referred
to as extensional �or EDB� predicates� Atoms whose predicate is extensional
are referred to as extensional �or EDB� atoms�

A Datalog program �or intensional database� is a set of Horn clauses with�
out function symbols� The predicates that appear in the head of clauses in
a Datalog program are referred to as intensional �or IDB� predicates� Atoms
whose predicate is intensional are referred to as intensional �or IDB� atoms�
We assume that extensional predicates cannot appear in the head of clauses�
and that predicates appearing only in the bodies of the clauses of a Datalog
program are extensional� As a result� the sets of intensional and extensional
predicates�atoms are necessarily disjoint�

A query of arity �a�� � � � � an� to �a� is a function from extensional databases of
arity �a�� � � � � an� to extensional databases of arity �a�� A query is expressed
by a program written in some database query language� In this paper we
use Datalog programs to express queries over extensional databases� Given
an extensional database EDB and a Datalog program IDB� the query corre�
sponding to an intensional predicate p in IDB is�

QIDB
p �EDB� � fdjp�d� belongs to the least Herbrandmodel of EDB�IDBg � �

Example � Let EDB � farc�a� b�� arc�b� c�� arc�c� d�� arc�a� e�g �with im�
plicit domain fa� b� c� d� eg� and let IDB be

path�X�Y �� arc�X�Y ��

path�X�Y �� arc�X�Z�� path�Z� Y ��

Then� the query corresponding to the �intensional� predicate path is�

QIDB
path �EDB� � f�a� b�� �b� c�� �c� d�� �a� e�� �a� c�� �a� d�� �b� d�g�

In this paper we will study the transformation of some� syntactically de�ned
classes of Datalog programs and queries into special �linear� Datalog pro�
grams� de�ned as follows�

De�nition � A linear program is a Datalog program such that every clause
in the program has at most one intensional atom in its body�

The program in example 	 is linear�

Notice that the notion of linear Datalog programs presented above has been
previously used in the literature ����	���

� In general� d is a tuple of elements of the domain D�
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De�nition � A linearisable program IDB is a Datalog program such that
there exists a linear program IDB

�

satisfying the property that� for every exten�
sional database EDB� the meaning of EDB�IDB coincides with the meaning
of EDB � IDB

�

restricted to the predicates occurring in EDB � IDB�
A linearisable query is a query corresponding to a linearisable program�

Notice that� since the database EDB in the earlier de�nition is not �xed� the
Herbrand universe of EDB is not �xed either�

In this paper we study linearisability of �piecewise linear programs� and �chain
queries�� de�ned below�

De�nition � A piecewise linear program is a Datalog program IDB such
that for every clause in IDB there is at most one atom in the body whose
predicate is 	mutually recursive
 with the predicate in the head� where

� two predicates p and q are said to be mutually recursive i� p 	depends on

q and q 	depends on
 p� where 	depends on
 is the least relation such that�
a predicate p depends on a predicate q i� there is a clause with p in its head
and either q or a predicate r which depends on q in its body�

It is easy to see that every linear program is piecewise linear� However� piece�
wise linear programs are not guaranteed to be linear in general�

Example � The following Datalog programs are piecewise linear but not lin�
ear�

Program ��

path�X�Y �� arc�X�Y ��

path�X�Y �� arc�X�Z�� path�Z� Y ��

double path�X�Y �� path�X�Y �� path�Y�X��

Program ��

ancestor�X�Y �� parent�X�Y ��

ancestor�X�Y �� parent�X�Z�� ancestor�Z� Y ��

parent�X�Y �� mother�X�Y ��

parent�X�Y �� father�X�Y ��

where arc� father and mother are extensional predicates�

Note that the path system accessibility program given in the Introduction is
neither linear nor piecewise linear�
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In this paper we will refer to extensional databases with binary relations only
as graphs� Note that the extensional database EDB in example 	 is a graph�
Moreover� any EDB for the extensional predicates arc� father and mother in
example � would be a graph too�

De�nition � Let EDB be a graph and � be the ��nite� alphabet containing
a letter Ri for each relation ri in EDB� Then� the chain query for a language
L � �� is�

CQL�EDB� � f�u� v�j there exists a 	path in EDB from u to v spelling a
word
 in Lg�

where a path from u to v spelling a word Ri� � � � Ril � �� is a sequence u �
u�� � � � � ul�� � v of elements of the domain of EDB such that rij�uj� uj��� �
EDB� for each j � 	� � � � � l� and a path spelling the empty word� �� is the
sequence u� u� for every element u of the domain of EDB�

Example � Let EDB be as in example �� Then � � fArcg�
Let L � fArciji � 	g� Then

CQL�EDB� � f�a� b�� �b� c�� �c� d�� �a� e�� �a� c�� �a� d�� �b� d�g

�
 QIDB
path in example ��� The spelled words are Arc� Arc� Arc� Arc� Arc��

Arc�� Arc�� respectively�

Example � Let EDB � fr�a� b�� r�b� c�� s�c� d�g �with implicit domain fa� b�
c� dg�� Then� � 
 fR�Sg� Let L 
 f RiSjji� j � �� i� j � � g� Then�

CQL�EDB� � f�a� b�� �a� c�� �a� d�� �b� c�� �b� d�� �c� d�g�

The spelled words are R� RR� RRS� R� RS� S� respectively�

Finally� we will also use the following notion�

De�nition 	 The transitive closure of a predicate p w�r�t� a program P is
the set of clauses Sp� where Sp � P � de�ned as follows�

�i� If the predicate of the head of C is p� then C belongs to Sp�
�ii� Let C be a clause in SP and p� be the predicate of an atom in the body of

C� Then the clauses in the transitive closure S�

p of p
� w�r�t� P are also in

Sp�
�iii� All clauses in Sp are generated by applying the above rules�
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��� Logic Program Transformation

In the transformation system of Tamaki � Sato ���� � � a sequence P�� � � � �Pn
of de�nite logic programs is generated� starting from the initial program P�� by
applying the unfold�fold transformation rules ����������	��	��� de�ned below�
and by introducing clauses de�ning new predicates �called Eureka de�nitions�
����� The unfold�fold transformation rules preserve the meaning of de�nite
logic programs� The clause introduction rule preserves the meaning of the
de�nite logic program it is applied to� restricted to the predicates occurring
in the program before the rule is applied�

De�nition �
 An initial program P� is a program satisfying the following
conditions�

�i� P� is divided into two disjoint sets of clauses� Pnew and Pold� The pred�
icates de�ned by Pnew are called new predicates� while those de�ned by
Pold are called old predicates�

�ii� The new predicates never appear in Pold nor in the bodies of the clauses
in Pnew�

Note that� although clauses de�ning new predicates �Eureka de�nitions� can
be introduced in any program of the transformation sequence� P�� � � � � Pn� we
will assume that all these de�nitions are in Pnew in P� to start with�

De�nition �� Let C be the clause A� B�K in Pl� with l � �� where B is an
atom and K a conjunction of atoms� and C�� ���� Cm be all clauses in Pl � whose
heads are uni�able with B by most general uni�ers ��� ���� �m� respectively�
The result of unfolding C at B is the set of clauses fC �

�� ����� C
�

mg such that if
Cj� with 	 � j � m� is Bj � Qj� where Qj is a �possibly empty� conjunction
of atoms� then C �

j is �A� Qj�K��j�
Then� Pl�� � �Pl � fCg� � fC �

�� ����� C
�

mg�
C is called the unfolded clause and C�� ����� Cm the unfolding clauses� B is
called the unfolded atom�

De�nition �� Let C be the clause H � K�L in Pl and F the clause A� K �

in Pnew� where K� K �� and L are conjunctions of atoms�
Then� the clause C � � H � A��L is the result of folding C using F if there
exists a substitution � satisfying the following conditions�

�i� K �� � K�

� In the following we adopt it in the formulation which appears in �
��
� It has been shown ���� that in general one can choose any Pj � j � l� rather than

just Pl� We omit this possibility here as this plays no role in the methodology we
propose later� in section ��

�



�ii� All variables in the body of F which do not appear in the head of F are
mapped through � into distinct variables which do not occur in C ��

�iii� F is the only clause in Pnew whose head is uni�able with A��
�iv� Either the head predicate of C is an old predicate� or C has been unfolded

at least once in the sequence P�� P�� ����� Pl���

Then� Pl�� � �Pl � fCg� � fC �g�
C is called the folded clause� and F is called the folding clause�

Note that this de�nition prevents self�folding �see part �iv��� namely folding
where the same clause serves as both folded and folding clause� which does
not preserve the meaning of de�nite logic programs�

Note that more powerful unfold�fold transformation systems than the Tamaki
� Sato�s we use in this paper have been proposed in the literature ������	��� In
particular� in ����� recursive clauses are allowed to be used as folding clauses� In
the system proposed in �	��	�� simultaneous folding of more than one clauses
is allowed� while in �	�� simultaneous folding using recursive Eureka de�nitions
is allowed� A lot of research work has also been done �see for example ��������
towards the de�nition of unfold�fold transformation systems that preserve
various semantics of logic programs which allow negative atoms in the clause
bodies� Although in this paper we do not need such additional features� it
would be interesting to investigate the usefulness of such systems in optimizing
transformations of database logic programs�

In the remainder of the paper we will rely upon the program transformation
methodology proposed in �����

De�nition �� An unfolding selection rule �U�rule for short� is a �partial�
function from clauses to atoms� The value of the function for a clause is a
body atom called the selected atom�

De�nition �� Let P be a program� C a clause and S a U�rule� An unfolding
tree �or U�tree for short� T for � P�C � via S is a tree labeled with clauses�
constructed as follows�

� C is the root label of T � and
� if M is a node labeled by a clause C and B is the atom selected by S in C�
then� for each clause C � in the result of unfolding C at B� there is a child
node N of M labeled by C ��

De�nition �� A nonempty tree T � is called an upper portion of a tree T i�
the following hold�

� The root node N of T � is also the root node of T �






� For every node N of T �� N is also a node of T and either N is a leaf node
of T � or all child nodes of N in T are also child nodes of N in T ��

An upper portion of T consisting of a single node is called a trivial upper
portion�

It can be shown ���� that for any program P and clause C� if L is the set of
leaves of an upper portion of a U�tree for � P�C � via an U�rule S� then
M�P � fCg� � M�P � L��

� Transforming Piecewise Linear Programs into Linear Programs

In this section we show that every piecewise linear Datalog program can be
transformed into an equivalent linear program� We show this constructively by
presenting a procedure which performs the transformation� The procedure uses
unfold�fold transformations and introduction of Eureka de�nitions� The pro�
cedure repeatedly applies a procedure which replaces by linear programs non�
linear clauses of a special kind� referred to as �minimally non�linear clauses�
�see de�nition 	� below�� which are always guaranteed to exist in piecewise
linear programs containing non�linear clauses �see lemma 	� below��

The following example illustrates the overall behavior of the procedure�

Example �� Let P � fC�� C�� C�� C�� C�� C�g be the piecewise linear Datalog
program with�

C� � a�X�Y �� edb	�X�Y ��

C� � a�X�Y �� b�X�Z�� a�Z� Y ��

C� � b�X�Y �� edb��X�Y ��

C� � b�X�Y �� edb��X�Z�� c�Z�W �� b�W�Y ��

C� � c�X�Y �� edb��X�Y ��

C� � c�X�Y �� edb��X�Z�� c�Z� Y ��

P is not linear due to the non�linear clauses C� and C�� We show how C� can
be replaced by a set of linear clauses� by applying logic program transformation
rules�

First� we introduce the Eureka de�nition�

D� � new	�X�Y �� c�X�Z�� b�Z� Y ��

Then� we fold C� using D�� thus obtaining the linear clause�
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C� � b�X�Y �� edb��X�Z�� new	�Z� Y ��

The Eureka de�nition D� is a non�linear clause� In order to replace it by a
set of linear clauses� we unfold D� at �c�X�Z�� using the clauses C� and C��
thus obtaining�

C	 � new	�X�Y �� edb��X�Z�� b�Z� Y ��

C
 � new	�X�Y �� edb��X�W �� c�W�Z�� b�Z� Y ��

Finally� by folding C
 using D� we obtain�

C�� � new	�X�Y �� edb��X�W �� new	�W�Y ��

fC	� C��g is a linear program for �new	�� Let P � � P � fC�g � fC�� C	� C��g�
P � is equivalent to P �fD�g� P � is still not linear due to the non�linear clause
C�� Starting from P �� we can replace C� by an equivalent set of linear clauses�
by applying similar techniques to the ones above� We �rst introduce the Eureka
de�nition�

D� � new��X�Y �� b�X�Z�� a�Z� Y ��

Then� we fold C� using D�� thus obtaining the linear clause�

C�� � a�X�Y �� new��X�Y ��

We now unfold D� at �b�X�Z�� using the clauses C� and C�� thus obtaining�

C�� � new��X�Y �� edb��X�Z�� a�Z� Y ��

C�� � new��X�Y �� edb��X�W �� new	�W�Z�� a�Z� Y ��

Then� we introduce the Eureka de�nition�

D� � new��X�Y �� new	�X�Z�� a�Z� Y ��

Further� we fold C�� using D�� thus obtaining the linear clause�

C�� � new��X�Y �� edb��X�W �� new��W�Y ��

Again� in order to replace D� by a set of linear clauses� we unfold D� at
�new	�X�Z�� using C	 and C��� and then we fold the clauses obtained� using
D� and D�� In this way we obtain the linear clauses�

C�� � new��X�Y �� edb��X�W �� new��W�Y ��

C�� � new��X�Y �� edb��X�W �� new��W�Y ��

The �nal program obtained by the above procedure is Pfinal � fC�� C�� C�� C��
C�� C	� C��� C��� C��� C��� C��� C��g� Pfinal is a linear program� Note that� if
we are interested only in the predicate �a�� we can just consider the transitive
closure of �a� w�r�t� Pfinal� consisting of the clauses C�� C��� C��� C��� C��� C���

		



De�nition �� Let P be a piecewise linear program and C a non�linear clause
in P � Then C is said to be minimally non�linear i� for every IDB atom in the
body of C whose predicate p is not mutually recursive with the predicate of the
head of C� the transitive closure of p w�r�t� P is a linear program�

Note that� in example 	�� C� is a minimally non�linear clause in P � whereas
C� is not� however� C� is a minimally non�linear clause in P ��

Every piecewise linear program which is not linear is guaranteed to contain at
least one minimally non�linear clause�

Lemma �� Let P be a piecewise linear Datalog program and N the set of
non�linear clauses in P � Then� either N is empty or there is �at least� one
minimally non�linear clause in N �

Proof� We de�ne an ordering relation �� over the set N consisting of all
nonlinear clauses of P � as follows� C� � C� if C� is in the transitive closure
wrt P of some intensional atom in the body of C� other than the atom which is
mutually recursive with the head of C�� It is easy to see that � is asymmetric
since otherwise P would not be piecewise linear� The minimally non linear
clauses of P are the minimal elements of N � �

Basically� the procedure� formally given in section ���� selects in turn mini�
mally non�linear clauses and replaces them by a set of linear clauses as given by
the procedure� formally given in section ��	� The procedure applies unfolding�
clause introduction �giving a new Eureka de�nition�� and folding� The unfold�
ing steps are determined by an unfolding selection rule� uniquely determined
by the set of intensional atoms in the bodies of clauses as follows�

De�nition �	 An unfolding selection rule S is a linear unfolding selection
rule �linear U�rule in short� i�� for any clause C in a program P � S selects
an intensional atom p�t� in the body of C such that the transitive closure of
p w�r�t� P is a linear program� and S is unde�ned for C if there is no such
predicate p�

Note that the U�rule �implicitly� adopted in example 	� is linear�

Note also that� in general� the atom selected by a linear U�rule� if any� is
not uniquely de�ned� Therefore� there might be multiple U�trees via a linear
U�rule for any Datalog program and clause� Finally�

Lemma �
 A linear U�rule is always de�ned for minimally non�linear clauses
in piecewise linear programs�
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Proof� Trivial� since if a clause C in a piecewise linear program P is minimally
non�linear� then there is always an atom in the body of C whose predicate�s
transitive closure w�r�t� P is a linear program� �

In the remainder of this section we will de�ne formally the procedure�

��� Minimally Non�Linear Clause Linearisation Procedure

The following lemma implies that when we unfold a minimally non�linear
clause C in a piecewise linear program P via a linear U�rule S� then S is also
de�ned for all non�linear clauses �if any� resulting from this unfolding� as these
clauses are minimally non�linear�

Lemma �� Let C be a minimally non�linear clause in P � S a linear U�rule
and T a U�tree for � P�C � via S� Then� every non�linear clause in the
set of leaves L of any �nite upper portion of T is minimally non�linear in
�P � fCg� � L�

Proof �By contradiction�� Suppose that a clause D � L is not minimally
non�linear� Then� there is an atom in the body of D whose predicate p is not
mutually recursive with the predicate of the head of D and whose transitive
closure is a non�linear program� However� the clauses in the transitive closure
of p are also in the transitive closure of the predicate q of the atom selected
by S in the body of C� Therefore� the transitive closure of q is not linear�
contradiction� �

The following de�nition introduces two kinds of upper portions of U�trees that
will be constructed by the procedure for deciding when to stop unfolding�
which Eureka de�nitions to introduce and when to start performing folding�

De�nition �� Let P be a Datalog program� C be a clause in P � S a U�rule�
T a U�tree for � P�C � via S� A �nite upper portion U of T is said to be

� F�linearisable wrt a set of Eureka de�nitions ED i� each leaf of U
� either can be folded using as folding clause a de�nition in ED and giving
as a result a linear clause�

� or is a linear clause�
� or is a 	failing
 clause in P � where a clause is failing in a program i�
there is an atom in the body of the clause which does not unify with the
head of any clause in the program�

� E�linearisable i� each leaf of U is
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� either a linear clause�
� or a failing clause in P �
� or a 	Eurekable
 clause� where a clause D in a node of a U�tree T for
� P�C � via S is Eurekable i� there is an ancestor F of D in T and a
tuple I of intensional atoms such that the tuples of all intensional atoms
in the bodies of both D and F are instances of I� F is called a folding
ancestor of D�

U is a minimal F�linearisable �E�linearisable� upper portion of T i� there
exists no F�linearisable �E�linearisable� resp�� upper portion U � of T � with U � 	�
U � which is also an F�linearisable �E�linearisable� resp�� upper portion of U �

As we will see in the procedure ��� the detection of a Eurekable clause in an
E�linearisable upper portion tells us that we have to stop unfolding in the
corresponding branch of the U�tree and introduce a new Eureka de�nition�
The body of the new de�nition consists of the tuple I� A failing clause in
an F�linearisable upper portion can be removed from any program without
a�ecting the meaning of the program�

Note that� for any Datalog program� clause in the program� U�rule and U�tree�
if there exists an E�linearisable upper portion �F�linearisable upper portion wrt
some given set of clauses� of the U�tree� then there exists a unique minimal
E�linearisable �F�linearisable� resp�� upper portion� Moreover�

Lemma �� Let P be a Datalog program� C be a minimally non�linear clause
in P � S a linear U�rule� T a U�tree for � P�C � via S� Then there exists at
least an E�linearisable upper portion of T �

Proof� Since S is a linear U�rule� it always selects an atom whose transitive
closure is a linear program� Thus� the number of the intensional atoms in the
body of each clause resulted by unfolding a clause C �i�e� descendant of C in
T � is less than or equal to the number of the intensional atoms in the body
of C� Since the number of intensional predicates in P is �nite� it is obvious
that for every branch of T we can �nd in a �nite depth from the root of T
either a linear clause or a clause D for which there is a tuple I of intensional
atoms and an ancestor clause F such that the tuple of the intensional atoms
of both clauses F and D are instances of I� Therefore� there exists a �nite
upper portion of T with the required properties� �

Instead� even if the chosen clause is minimally non�linear and the U�rule is
linear� an F�linearisable upper portion of T is only guaranteed to exist wrt
some special set of clauses� for example the set ED chosen below�

Procedure �� �Clause Linearisation procedure �CLP
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Input � a piecewise linear program P � a minimally non�linear clause C in P
and a linear U�rule S�

Output � a set LC of linear clauses and a set ED of clauses de�ning predi�
cates not occurring in P �Eureka de�nitions��

�i� Construct the minimal E�linearisable upper portion of a U�tree T for
� P�C � via S�

�ii� For every leaf D in U which is Eurekable via ancestor F introduce a fresh
predicate symbol new and construct a clause
E � new�X�� � � � �Xk�� I
with
�a� I a conjunction of intensional atoms such that both the conjunction

ID of all intensional atoms in the body of D and the conjunction IF
of all intensional atoms in the body of F are instances of I � and

�b� fX�� � � � �Xkg the minimal subset of the set of all variables in I such
that both D and F can be folded using E�

Let ED be the set consisting of all Es constructed as above after having
eliminated 	copies
� di�ering from other clauses in the set only in the
names of the predicate they de�ne and in the order of the variables in the
heads�

�iii� Select the minimal F�linearisable upper portion U � of U wrt ED�
�iv� For each clause E in ED construct the minimal� non�trivial F�linearisable

upper portion UE wrt ED of a U�tree for � P�E � via S�
�v� Let LC be the set of all linear clauses in the leaves of U � and UE together

with the set of all clauses resulting from the folding of the non�linear and
non�failing clauses in the leaves of U � and UE using the clauses in ED�

Note that U � in step �iii� can be a trivial upper portion� whereas UE in step �iv�
is necessarily non�trivial� by de�nition of folding� Indeed� if UE were trivial�
then a step of self�folding would take place in step �v�� But this is prohibited
by de�nition 	�� part �iv��

All clauses in ED are non�linear clauses by construction �see step �ii��� How�
ever�

Lemma �� Let P be a piecewise linear program� C a minimally non�linear
clause in P � S a linear U�rule for P � and �LC�ED� be the output of the CLP
applied to input �P�C� S�� Then�

�� every clause in ED is a minimally non�linear clause in P � ED�
�� every clause in LC is linear�

�The best choice is to use as I the most speci�c generalization�
�� of ID and IF �
An algorithm to compute the most speci�c generalization of a set of expressions is
given in �
���
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Proof�

	� Directly from lemma �	� since C is a minimally non�linear clause in P � and
by construction of the Eureka de�nitions �step �ii���

�� Trivially� by construction �step �v�� and by de�nition of F�linearisable upper
portion� �

Part 	� of this lemma implies that the linear selection rule S �used in step �i��
is always de�ned for the clauses in ED and the clauses in UE� for all E � ED�
constructed at step �iv��

Theorem �� �Correctness of CLP
 Let P be a piecewise linear program�
C a minimally non�linear clause in P and S a linear U�rule for P � Then

y CLP applied to �P�C� S� terminates�
z Let LC be the set of linear clauses returned by CLP applied to �P�C� S��
and pred�P � be the set of predicates de�ned in P �
Then� M�P � � Mpred�P ���P � fCg� � LC��

Proof�

y Termination� It is su
cient to prove that it is always possible to construct
	� a minimal E�linearisable upper portion U of a U�tree for � P�C �
via S in step �i� of the procedure� �� a minimal F�linearisable �wrt ED�
upper portion U � of U in step �iii�� and �� for every clause Ei in ED� a
minimal �non�trivial� F�linearisable �wrt ED� upper portion UEi

of a U�
tree for � P�Ei � via S in step �iv� of the procedure�

	� Directly by lemma ���
�� Directly by construction of the Eureka de�nitions �step �ii���
�� Assume that� for the construction of UEi

� we use the same U�rule S as
in step �i�� Since the selection performed by S is uniquely determined
by the set of the intensional atoms in the body of a clause� UEi

will be
constructed in a similar way as the U�tree for the clause which led to the
introduction of Ei� In fact� as the body of Ei has the same intensional
atoms with a clause G in a leaf of U � for which Ei has been introduced�
the clauses in the nodes of UEi

can be put into one�to�one correspondence
with the clauses in the subtree of U whose root is G� The clause in a node
of UEi

has the same intensional atoms with the corresponding clause in a
node of U � The two clauses di�er in that the EDB atoms in the body of
a clause in UEi

is subset of the EDB atoms of the corresponding clause in
U � Thus UEi

will be constructed in a �nite number of unfolding steps�
z Equivalence� It is easy to see that the application of the unfold�fold trans�
formations in the procedure �� complies with the conditions in the de�ni�
tions 	�� 		 and 	�� Thus� by the correctness of the transformation system
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we conclude that Mpreds�P ��P � ED� � Mpreds�P ���P � fCg� � LC�� Since
Pnew � ED it is easy to by the de�nition 	� that Mpreds�P ��P � ED� �
Mpreds�P ��P �� Therefore Mpreds�P ��P � �Mpreds�P ���P � fCg� � LC�� �

Example �� Figures � and � show the application of the CLP procedure ��
to clause C� of the program of example ��� In this case� the procedure returns
ED � fD�g and LC � fC�� C	� C��g� The underlined atoms in non�leaf nodes
of the trees are the atoms selected by the U�rule�

Figure � corresponds to step �i� of the procedure� The underlined tuple of atoms
in the leaf is instance of the chosen tuple I �that leaf is a Eurekable clause��
The detected Eurekable clause allows to introduce the Eureka de�nition D�

�step �ii���

The minimal F�linearisable upper portion of the U�tree in Figure � consists of
a single node labeled by the clause C�� C� is folded using D�� The result of this
folding �step �iii� of the CLP procedure� is the clause C��

Figure � corresponds to the construction of a linear de�nition for the predicate
�new	� in step �iv��

Finally� �gure � corresponds to the step � i� of the CLP procedure applied to
� P �� C� �� The detected Eurekable clauses allows to introduce the de�nitions
D� and D��

C4:  b(X,Y)  <-- edb3(X,Z), c(Z,W), b(W,Y)

b(X,Y)  <-- edb3(X,Z), edb4(Z,W), b(W,Y) b(X,Y)  <-- edb3(X,Z), edb5(Z,F), c(F,W), b(W,Y)

Fig� 
� A minimal E�linearisable upper portion of a U�tree for � P�C� � �

D1:  new1(X,Y)  <-- c(X,Z), b(Z,Y)

C8: new1(X,Y)  <-- edb4(X,Z), b(Z,Y) C9: new1(X,Y)  <-- edb5(X,W), c(W,Z), b(Z,Y)

C10D1

Fig� �� A minimal �non�trivial� F�linearisable upper portion of the U�tree for
� P�D� �� The non�linear leaf clause C
 is foldable using D��
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C2:  a(X,Y)  <-- b(X,Z), a(Z,Y)

a(X,Y)  <-- edb2(X,Z), a(Z,Y) a(X,Y)  <-- edb3(X,W), new1(W,Z), a(Z,Y)

a(X,Y)  <-- edb3(X,W), edb4(W,F),
b(F,Z), a(Z,Y)

a(X,Y)  <-- edb3(X,W), edb5(W,F), new1(F,Z), a(Z,Y)

Fig� �� A minimal E�linearisable upper portion of a U�tree for � P �� C� ��

��� Program Linearisation Procedure

The procedure repeatedly applies the CLP� replacing the chosen minimally
non�linear clause by the set of linear clauses generated by CLP for that clause�

Procedure �� �Program Linearisation Procedure �PLP



Input � a piecewise linear program P and a linear U�rule S�

Output � a set LC of linear clauses and a set of Eureka de�nitions ED�

Let i � � and Pi � P �

Let NL be the set of all non�linear clauses in P �

while NL is non�empty do

� Select a minimally non�linear clause C from NL�

� Apply CLP to �Pi� C� S� giving LCi and EDi�

� Let Pi�� � �Pi � fCg� � LCi�

� Let NL � NL � fCg� and i 
 i � ��

Let ED �
S
i EDi for all i� and LC �

S
i LCi for all i�

Theorem �	 �Correctness of PLP
 Let P be a piecewise linear program�
S a linear U�rule for P � Then

y PLA applied to �P� S� terminates�
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z Let LC be the set of linear clauses returned by PLP applied to �P� S��
pred�P � be the set of predicates de�ned in P � and NL be the set of all
non�linear clauses in P �
Then� M�P � � Mpred�P ���P �NL� � LC��

Proof�

y Termination� The procedure always terminates since� 	� there is a �nite
number of clauses in NL� �� in each iteration of PLP exactly one clause in
NL is replaced by a set of linear clauses� and �� each iteration has a �nite
number of steps�

z Equivalence� Directly from the correctness of the CLP� �

It is interesting to notice that the CLP procedure does not preserve �nite fail�
ure in the top�down evaluation of intensional atoms� namely� such evaluation
might �nitely fail w�r�t� the original �non�linear� Datalog program but might
in�nitely fail in the program returned by the CLP procedure� Indeed� in order
to preserve �nite failure� we should impose stronger conditions on the folding
rule �see ������ Besides� our procedure could be easily modi�ed so as to pre�
serve �nite failure� In any case� the loss of �nite failure does not constitute
a problem when Datalog programs are evaluated bottom�up� which is usually
the case�

We have considered a class of Datalog programs� that are called piecewise lin�
ear� and we showed that it coincides with the class of linear Datalog programs�
Up to our knowledge� it was not known until now that these two classes of
programs have the same expressive power� To prove this result� we have pre�
sented a transformation from non�linear to linear programs� Questions may
arise concerning the size and the e
ciency of the programs obtained by the
transformation� Although answering these questions is outside the scope of the
paper� it is worth making the following observations� Firstly� it is important
to notice that the number of new predicates introduced by the transforma�
tion depends solely on the number of IDB predicates in the original programs�
In particular� this number is completely independent from the speci�c EDB
database� hence the transformation can be carried out without any reference
to any speci�c EDB database� The only relation of the proposed transfor�
mation with any possible EDB is that they share the same EDB predicate
names� Moreover� the transformation of a program can be done o��line� prior
to using the transformed program in conjunction with any EDB� and thus the
complexity of performing the transformation is not of particular importance�
especially if such complexity is weighted against multiple repeated uses of the
trnasformed program with many di�erent EDBs�

	




However� note that re�nements of the proposed transformation might allow
to reduce the number of clauses in the transformed program �e�g� by choosing
appropriate unfolding selection rules� and�or by discarding redundant clauses
produced by the transformation�� This is however outside the scope of this
paper�

� Linearisable Chain Queries

In this section we consider chain queries for some classes of languages �regular
and �pseudo�regular�� de�ned below� and prove their linearisability� Linearis�
ability of �pseudo�regular� chain queries is proven with the help of the results
in the previous section ��

Further� we study linearisability of generic chain queries� de�ned as �combi�
nations� of �simpler� chain queries�

��� Regular Chain Queries

Regular languages are generated by grammars with production rules of the
form�

I 
 R�

I 
 RJ � or

I 
 JR

where I� J are non�terminal symbols and R is a terminal symbol� The ter�
minal symbols are elements of �� the ��nite� alphabet for the language L�G�
generated by the grammar G�

It is known that chain queries for regular languages are linearisable ����� We
re�prove this result constructively� by generating� for each given regular chain
query� the corresponding �equivalent� linear Datalog program�

De�nition �
 The Datalog program IDB�G� corresponding to a regular
grammar G is constructed as follows�

� each �terminal or non�terminal� symbol is mapped onto a binary �exten�
sional or intensional� respectively� predicate�

� let �non�terminal� symbols I� J be mapped onto the intensional predicates i�
j and �terminal� symbol R be mapped onto the extensional predicate r� then
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each production rule I 
 RJ is mapped onto a clause

i�X�Y �� r�X�Z�� j�Z� Y �

each production rule I 
 JR is mapped onto a clause

i�X�Y �� j�X�Z�� r�Z� Y �

and each production rule I 
 R is mapped onto a clause

i�X�Y �� r�X�Y ��

Then� the query for a regular language L�G� coincides with the query corre�
sponding to the predicate i in IDB�G� on which the initial symbol I in G is
mapped�

Theorem �� Given a regular grammar G with initial symbol I� let I be
mapped onto the intensional predicate i in IDB�G�� For every extensional
database EDB for the extensional predicates in IDB�G��

CQL�G��EDB� 
 Q
IDB�G�
i �EDB��

Proof� By de�nition� Q
IDB�G�
i �EDB� � f�u� v�ji�u� v� belongs to the least

Herbrand model of EDB � IDB�G�g� Since SLD resolution is complete with

respect to the least Herbrand model semantics ��	�� Q
IDB�G�
i �EDB� � f�u� v�j

there is an SLD refutation for i�u� v� in EDB � IDB�G�g�

It is easy to prove� by induction� that there is a one�to�one correspondence
between derivation trees for words Ri� � � �Ril of L�G� and SLD derivations� in
IDB�G� �and therefore in EDB � IDB�G�� from goals � i�X�Y � to goals
� ri��X�Z��� � � � � ril�Zl��� Y �� for some distinct variables Z�� � � � � Zl��� Indeed�
the application of a production rule I 
 JR to a non�terminal symbol I
corresponds to a step of resolution between the goal� � � � � i�X�Y �� � � � and the
clause i�X�Y �� j�X�Z�� r�Z� Y � �similarly for the other kinds of production
rules��

Then� for any such word Ri� � � �Ril of L�G�� assume rij�uj� uj��� � EDB�
for j � 	� � � � � l� i�e� �u�� ul��� � CQL�G��EDB�� Then� trivially there is a
refutation for� ri��X�Z��� � � � � ril�Zl��� Y � in EDB �and therefore in EDB�
IDB�G�� returning the substitution fX�u�� Z��u�� � � � � Zl���ul� Y�ul��g� i�e�

�u�� ul��� � Q
IDB�G�
i �EDB��

Conversely� for any derivation from� i�X�Y � to� ri��X�Z��� � � � � ril�Zl��� Y ��
assume there is a refutation for � ri��X�Z��� � � � � ril�Zl��� Y � in EDB �and
therefore in EDB � IDB�G�� returning the substitution

fX�u�� Z��u�� � � �Zl���ul� Y�ul��g� i�e� �u�� ul��� � Q
IDB�G�
i �EDB��

Then� trivially rij �uj� uj��� � EDB� for j � 	� � � � � l� namely �u�� ul��� �
CQL�G��EDB�� �
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Trivially� for every regular grammar G� the corresponding IDB�G� is linear
and therefore linearisable� As a consequence� the chain queries for regular
languages are linearisable�

��� Pseudo�Regular Chain Queries

We identify a class of languages� containing all regular languages� such that
all chain queries for languages in such class are linearisable� This is the class
of all pseudo�regular languages� of the form�

f�k�� � � � �knn j for each j � 	� � � � � n� either kj is an index and kj � �
or kj is a positive natural number g

with �j � ��� j � 	� � � � � n� and n � ��

We will refer to the chain queries for such languages as pseudo�regular �chain�
queries�

Note that every regular language is trivially pseudo�regular�

We prove that pseudo�regular queries are linearisable by constructing the cor�
responding Datalog programs� show that they are piecewise linear and there�
fore linearisable� by the results in section �� We �rst illustrate the construction
by means of examples�

Example �� Let L � fRi�
� R

i�
� R

i�
� ji� � �g �with � � fR�� R�� R�g�� The

Datalog program corresponding to the query for L is�

i��X�Y �� i��X�Z�Z�W�W� Y ��

i��X�Z�W�U� V� Y ��

ij���X�X��� ij���W�W��� ij���V� V��� i��X�� Z�W�� U� V�� Y ��

i��X�X�W�W� Y� Y ��

ij���X�X��� r��X�X���

ij���W�W��� r��W�W���

ij���V� V��� r��V� V���

This program is not linear but is piecewise linear and therefore linearisable
�see section ��� Note that in this example linearisation can be achieved simply
by unfolding the predicates ij�e� for e � 	� �� ��
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i��X�Y �� i��X�Z�W�U� V� Y ��

i��X�Z�W�U� V� Y �� r��X�X��� r��W�W��� r��V� V���

i��X�� Z�W�� U� V�� Y ��

i��X�X�W�W� Y� Y ��

Example �� Let L � fRi�
� R

i�
� R

i�
� R

�
�ji�� i� � �g �with � � fR�� R�� R�� R�g��

The Datalog program corresponding to the query for L is�

i��X�Y �� i��X�Z�W�U�� i��Z�W �� i��U� V �� i��V� Y ��

i��X�Z�W� Y �� i����X�X��� i����W�W��� i��X�� Z�W�� Y ��

i��X�X� Y� Y ��

i����X�X��� r��X�X���

i����W�W��� r��W�W���

i��Z�W �� i����Z�Z��� i��Z��W ��

i��Z�Z��

i����Z�Z��� r��Z�Z���

i��U� V �� i����U� V ��

i��V� Y �� i����V� Y ��

i����U� V �� r��U� V ��

i����V� Y �� r��V� Y ��

This program is not linear but is piecewise linear and therefore linearisable
�see section ��� Note that in this example it is not su�cient just unfolding
the predicates ij�e� for j � 	� �� �� in order to achieve linearisation� Indeed� the
result of such unfolding is�

i��X�Y �� i��X�Z�W�U�� i��Z�W �� i��U� V �� i��V� Y ��

i��X�Z�W� Y �� r��X�X��� r��W�W��� i��X�� Z�W�� Y ��

i��X�X� Y� Y ��

i��Z�W �� r��Z�Z��� i��Z��W ��

i��Z�Z��

i��U� V �� r��U� V ��

i��V� Y �� r��V� Y ��

��



Example �� Let L � f�R�R�R��i�R
i�
� R

i�
� ji�� i� � �g �with � � fR�� R�� R�� R�� R�g��

The Datalog program corresponding to the query for L is�

i��X�Y �� i��X�Z�W� Y �� i��Z�W ��

i��X�Z�W� Y �� i����X�X��� i����W�W��� i��X�� Z�W�� Y ��

i��X�X� Y� Y ��

i����X�X��� r��X�X��� r��X��X��� r��X��X���

i����W�W��� r��W�W���

i��Z�W �� i����Z�Z��� i��Z��W ��

i��Z�Z��

i����Z�Z��� r��Z�Z���

This program is not linear but is piecewise linear and therefore linearisable
�see section ���

Before we de�ne the general technique for mapping pseudo�regular chain
queries onto Datalog programs� note that each pseudo�regular language can be
equivalently rewritten in such a way that every integer exponent is 	� For ex�
ample� the language in example �� can be rewritten as fRi�

� R
i�
� R

i�
� R�R�ji�� i� �

�g� In the sequel� we will assume such rewriting of pseudo�regular languages�

De�nition �� The Datalog program IDB�L� corresponding to a pseudo�
regular query for a language

f�k�� � � � �knn j for each j � 	� � � � � n� either kj is an index and kj � �
or kj is � g

for some n � � and �j � ��� j � 	� � � � � n� is constructed as follows� Let�

� m be the number of integer and distinct indexes amongst k�� � � � � kn �trivially�
m � n�� and� after renaming them �for ease of reference� as i�� � � � � im�
according to the order in which they appear� let

� aj be the number of factors with �the integer or index� ij as exponent� j �
	� � � � �m� �

For ease of reference� let us

� rename the bases of the aj factors of exponent ij �j � 	� � � � �m�
as �j��� � � � � �j�aj � and

� �Note that� if ij is 
 then aj � 
�

��



� assume each �j�e �j � 	� � � � �m� e � 	� � � � � aj�
� be Rj�e��� � � � � Rj�e�ij�e� for

some ij�e � 	 �given in the de�nition of L��

Then� IDB�L� has m � 	 intensional predicates� i�� i�� � � � � im� with arity ��
�a�� � � � � �am� respectively� and� for each j � 	� � � � �m� aj intensional predi�
cates� ij��� � � � � ij�aj� each with arity �� de�ned by

i��var������ var���n���
i��vars��� � � � � im�varsm�

by clauses �for j � 	� � � � �m�

ij�var���j���� var���j���� � � � � var���j�aj �� var���j�aj���
ij���var���j����Xj���� � � � � ij�aj�var���j�aj��X

j�aj��
ij�Xj��� var���j���� � � � �Xj�aj � var���j�aj��

ij�var���j���� var���j���� � � � � var���j�aj �� var���j�aj���
var���j��� � var���j���� � � � � var���j�aj� � var���j�aj�

and by clauses �for j � 	� � � � �m� e � 	� � � � � aj�

ij�e�var���j�e��Xj�e��
rj�e���var���j�e��X��� rj�e���X��X��� � � � � rj�e�ij���Xij�e���X

j�e�

where Xi are fresh� distinct variables� each rj�e�i is an �extensional� predicate
symbol corresponding to the letter Rj�e�i� and

� var���i�� var���i� be �distinct� variables associated to the factor with base
�i� for i � 	� � � � � n �we use a functional representation of variables for ease
of reference�� such that� for i � 	� � � � � n� 	� var���i� � var���i���� and

� varsj � var���j���� var���j���� � � � � var���j�aj�� var���j�aj�� for j � 	� � � � �m� 	

In example ��� there is one distinct index� i�� and thus two intensional predi�
cates� i� and i�� The predicate i� has arity �� since a� � �� as there are three
factors �Ri�

� � R
i�
� and Ri�

� � with the index i� as exponent� Since a� � �� there
are three additional �binary� intensional predicates i���� i���� i����

In example ��� there are two distinct indexes� i� and i�� and an integer expo�
nent� � � expressible via two integer exponents� 	�� and thus �ve intensional
predicates� i�� i�� i�� i� and i�� The predicate i� has arity �� since a� � �� as
there are two factors �Ri�

� and Ri�
� � with the index i� as exponent� The pred�

icate i� has arity �� since a� � 	� as there is only one factor �Ri�
� � with the

index i� as exponent� The predicates i� and i�� corresponding to the integer

�Note that� if ij is 
 then e � 
�
	Note that� if ij is 
� then varsj � var���j���� var���j����

��



exponents� have arity �� since a� � a� � 	� 
 Since a� � �� there are two
additional �binary� intensional predicates i���� i���� Since a� � 	� there is one
additional �binary� intensional predicate i���� Since a� � 	� there is one addi�
tional �binary� intensional predicate i���� Since a� � 	� there is one additional
�binary� intensional predicate i����

Similarly in example ���

Moreover� in example ��� ���� � �� � R�� ���� � �� � R� and ���� � �� � R�

�all corresponding to exponent i���

In example ��� ���� � �� � R� and ���� � �� � R� �both corresponding to
exponent i��� ���� � �� � R� �corresponding to exponent i��� ���� � �� � R�

�corresponding to integer exponent 	�� and ���� � �� � R� �corresponding to
integer exponent 	��

In example ��� ���� � �� � R�R�R� and ���� � �� � R� �both corresponding
to exponent i��� and ���� � �� � R� �corresponding to exponent i��� Moreover�
R����� � R�� R����� � R�� R����� � R� �for ������ R����� � R� �for ������ and
R����� � R� �for ������

Finally� in example ��� var����� � X� var����� � Z � var������ var����� �
W � var����� and var����� � Y �

The query for a pseudo�regular language L coincides with the query corre�
sponding to the predicate i� in IDB�L��

Theorem �� Given a pseudo�regular language L� for every extensional database
EDB for the extensional predicates in IDB�G��

CQL�EDB� 
 Q
IDB�L�
i�

�EDB��

The proof of this theorem is analogous to the proof of theorem �	 but is fully
given here for completeness of presentation�

Proof� By de�nition� Q
IDB�L�
i�

�EDB� � f�u� v�ji��u� v� belongs to the least
Herbrand model of EDB � IDB�L�g� Since SLD resolution is complete with

respect to the least Herbrand model semantics ��	�� Q
IDB�L�
i�

�EDB� � f�u� v�j
there is an SLD refutation for i��u� v� in EDB � IDB�L�g�

It is not di
cult to see that there is a one�to�one correspondence between
words �k�� � � � �knn � for concrete values of k�� � � � � kn� of L and SLD derivations�


Note that the arity of intensional predicates corresponding to integer exponents
is always �� since each factor with integer exponent is considered separately�

��



in IDB�L� �and therefore in EDB�IDB�L��� from goals� i��X�Y � to goals
�assume each �j � Rj�� � � � Rj�lj � for some lj� given in the de�nition of L�

� r����X�X
���
� �� r����X

���
� �X���

� �� � � � � r��l��X
���
l���

�X���
l�
��

r����X
���
l�
�X���

� �� � � � � � � � � � � � �� r��l��X
���
l���

�X���
l�
��

� � � �

r����X
��k���
l�

�X��k�
� �� � � � � � � � � � � r��l��X

��k�
l���

�X��k�
l�

��

r����X
��k�
l�

�X���
� �� � � � � � � � � � � � �� r��l��X

���
l���

�X���
l�
��

� � � �

r����X
��k���
l�

�X��k�
� �� � � � � � � � � � � r��l��X

��k�
l���

�X��k�
l�

��
� � � �

rn���X
n���kn��

ln��
�Xn��

� �� � � � � � � � � �� rn�ln�X
n��
ln���X

n��
ln

��
� � � �

rn���X
n�kn��
ln

�Xn�kn
� �� � � � � � � � � �� rn�ln�X

n�kn
ln��� Y �

for some distinct variables X���
� � � � � �Xn�kn

ln��
�in turn distinct from X and Y ��

We will refer to any such goal as � goal��k�� � � � �knn �� If kj � �� for some
j � 	� � � � � n� then the conjuncts corresponding to �j �i�e� the conjuncts in

the predicates rj�i� for i � 	� � � � � lj� are missing and X
j�kj
lj

� X
j���kj��

lj��
� If

k� � � � � � kn � � then � goal��k�� � � � �knn � is � X � Y �

Then� for any such word �k�� � � � �knn ��j � Rj�� � � � Rj�lj � for some lj� given in
the de�nition of L�� assume �u� v� � CQL�EDB�� Then� trivially there is a
refutation for� goal��k�� � � � �knn � in EDB �and therefore in EDB �IDB�L��

returning the substitution fX�u� Y�vg� i�e� �u� v� � Q
IDB�L�
i�

�EDB��

Conversely� for any derivation from� i��X�Y � to� goal��k�� � � � �knn �� assume
there is a refutation for� goal��k�� � � � �knn � in EDB �and therefore in EDB�

IDB�L�� returning the substitution fX�u� Y�vg� i�e� �u� v� � Q
IDB�L�
i�

�EDB��
Then� trivially �u� v� � CQL�EDB�� �

Lemma �� The Datalog program corresponding to any pseudo�regular chain
query is piecewise linear�

Proof� Let L be a pseudo�regular language and IDB�L� be the corresponding
Datalog program� Let i�� i�� � � � � im� and� for each j � 	� � � � �m� let ij��� � � � � ij�aj
be the intensional predicates de�ned in IDB�L�� The clauses de�ning each
ij�lj � j � 	� � � � �m and l � 	� � � � � aj� are all linear� Then� the only �potentially�
non�linear clauses are those de�ning i�� i�� � � � � im� The clause de�ning i� is
�in general� non�linear but none of the intensional atoms in its body �whose
predicates are i�� � � � � im� is mutually recursive with i�� Finally� in the body
of each clause de�ning a predicate ij� for j � 	� � � � �m� at most one atom is

��



mutually recursive with the head predicate of the clause� Therefore� IDB�L�
is piecewise linear� �

Therefore� the Datalog program corresponding to any pseudo�regular chain
query is linearisable �see section ���

� �Non�Linearisable
 Context�Free Chain Queries

Linearisability is not a property that many Datalog programs have� In fact�
there are �simple� Datalog programs that are not linearisable� To support this
claim we review some negative results from the literature�

Chain queries for context�free languages are referred to as context�free chain
queries�

It is easy to map a context�free grammarG �generating a context�free language
L�G�� in a natural way onto a Datalog program computing the chain query
CQL�G�� We illustrate this mapping by an example�

Example �� Let G be the context�free grammar with production rules

I 
 R�IR�I j ��

initial �non�terminal� symbol I and terminal symbols R�� R�� Then CQL�G� is
computed by the Datalog program�

I�X�Y �� R��X�Z��� I�Z�� Z��� R��Z�� Z��� I�Z�� Y ��

I�X�X��

Datalog programs as above� i�e� programs with one initializing clause and one
recursive clause� are called elementary chain programs ����� All context�free
chain queries can be mapped onto elementary chain programs�

It is well known that regular languages are context�free� but there exist context�
free languages which are not regular� In addition� note that context�free lan�
guages might not be pseudo�regular� e�g� the languages fW jW has the same
number of occurrences of R� and R�g is context�free but not pseudo�regular�
Moreover� pseudo�regular languages might not be context�free� e�g� see the
language in example ��� However� some pseudo�regular languages are context�
free� e�g� see the languages in examples �� and ���

Trivially from the results in the previous section �� all context�free chain
queries that are �pseudo��regular are linearisable� However� there are chain

��



queries for context�free languages which are not linearisable� as proven in the
literature�

Theorem �	 ��� Let L� � fR�� R�g� be the context�free language�

L� � f�j� has the same number of occurrences of R� and R�g�

Then� the chain query CQL� is not linearisable�

Theorem �
 ��� If L is generated by one of the context�free grammars below�
then the chain query CQL is not linearisable�

a� I 
 IR�I�R�IR�I�
j j �� where j � 	�

b� I 
 �IR��iIR�I�R�I�j j �� where i� j � 	�

� Conclusions and Future Work

We have investigated linearisability of Datalog programs�

a� We have shown constructively that any piecewise linear logic program into
an equivalent linear program� by giving a procedure that performs the trans�
formation�

b� We have de�ned pseudo�regular chain queries and have shown how to ex�
press them by means of Datalog programs that are piecewise linear� hence� by
a�� linearisable�

The procedure for piecewise linear programs relies heavily upon formal logic
program transformation techniques known to preserve the meaning of pro�
grams� Correctness of the procedure is a direct consequence of the meaning�
preserving nature of the transformation techniques� Thus� the results presented
in this paper are also interesting in view of the fact that they attack the prob�
lem of applying program transformation techniques� when de�ning a priori the
subclass of programs to which they are going to be applied�

Linearisability of Datalog programs�queries has been studied elsewhere in the
literature� For example� �	�� gives conditions for the linerisability of bilinear
Datalog programs� i�e� non�linear programs with at most two intensional pred�
icates in the body of each clause� Since each non�linear Datalog program can
be equivalently expressed via a bilinear program �	��� these results apply gen�
erally� ������� give necessary and su
cient conditions for linerisability� which
are instances of the ones given in �	��� Rather than looking at generic non�
linear queries� we have considered the special class of piecewise linear Datalog

�




programs and some chain queries� interesting despite their simplicity �	����

We are currently working on de�ning a class of languages with the property of
being exactly the class for which chain queries are linearisable� We believe that
it is wider than the class of pseudo�regular languages� in fact we have made
some progress in �guring out that this class can be de�ned via a special kind
of automata that use a constant number of stacks and queues in a speci�c
fashion�
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