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Abstract

Interest in the analysis of user behaviour on the Internet has been increasing rapidly, especially since the
advent of electronic commerce. In this context, we argue here for the usefulness of constructing communities of
users with common behaviour, making use of machine learning techniques. In particular, we assume that the
users of any service on the Internet constitute a large community and we aim to construct smaller communities
of users with common characteristics. The paper presents the results of three case studies for three different types
of Internet service: a digital library, an information broker and a Web site. Particular attention is paid on the
different types of information access involved in the three case studies: query-based information retrieval,
profile-based information filtering and Web-site navigation. Each type of access imposes different constraints on
the representation of the learning task. Two different unsupervised learning methods are evaluated: conceptual
clustering and cluster mining. One of our main concerns is the construction of meaningful communities that can
be used for improving information access on the Internet. Analysis of the results in the three case studies brings
to surface some of the important properties of the task, suggesting the feasibility of a common methodology for
the three different types of information access on the Internet.
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1. Introduction

The separation of “wheat from hay” on the Internet is becoming increasingly important as the
amount of information available electronically becomes unmanageable for its non-expert receivers. As
a result, a number of service providers have appeared recently in the market to help Internet users
separate the information they need out of the plethora of information on the net. Furthermore, new
processes such as electronic customer relationship management (e-CRM), Web usage analysis and
Web mining have been developed in the last few years. All of these share the same goal: understanding
the needs, interests and knowledge of the users of Web sites. The motivation stems from the fact that
added value is not gained merely through larger quantities of data on a site, but through easier access
to the required information at the right time and in the most suitable form. Seen from a different
viewpoint: “The quantity of people visiting your site is less important than the quality of their
experience” (Schwartz, 1997).

In this paper we examine the exploitation of user modelling techniques for the customisation of
information services to the needs of the users. We study three different types of access to information,
covering the majority of today’s information services on the Internet: query-based information
retrieval, profile-based information filtering and Web-site navigation. Our goal is to show how
machine learning techniques can be used for automating the construction of user models, providing
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useful information for the customisation of Internet services. In particular, we are interested in
constructing community models, which represent patterns of usage of the service and can be
associated with different types of user. A community corresponds to a group of users who exhibit
common behaviour in their interaction with the system (Orwant, 1995). This type of user model has
only recently been paid some attention, primarily in the context of collaborative filtering, which aims
to personalise a Web service without having to analyse its content. In contrast to earlier, memory-
based approaches to collaborative filtering (e.g. Resnick and Varian, 1997), the new approach that
makes use of community models – also known as model-based collaborative filtering (e.g. Breese et
al, 1998) – organises the users into groups, rather than simply recording information about them
individually. In this view, the construction of communities is a more active approach to user modelling
than memory-based collaborative filtering, in the sense that models for groups of users are actually
constructed.

Through the discovery of communities, an Internet service, such as an e-commerce site, can be
treated as a simple community-based system. From that point of view, the users of a service make up a
large community, within which smaller communities of users with common characteristics can be
identified. These characteristics are usually measurable parameters of their interaction with the system,
such as the news articles that they view or the books that they buy, but they can also be augmented
with information obtained explicitly from the users, such as their age or their knowledge level. In the
latter case, where the users provide explicitly information about them, the user models are often called
stereotypes, rather than communities.

The discovery of user communities can facilitate the interaction of humans with a computer system,
such as an Internet service, in many ways:

• Service optimisation. It provides insight to service providers, helping them to re-organise the
system, in order to make it more suitable to the needs of different types of user.

• Service personalization. It can help the users identify information of interest to them, in the
collaborative filtering fashion mentioned above.

• Interaction support. Given the appropriate infrastructure that protects the users’ privacy, the
service can support interaction among community members. In that case, the acquaintance
models (Mamdani et al. 1999) of individual users can be based on the models of the
communities in which they participate.

However, the nature and composition of user communities in a highly dynamic environment, such as
the Internet, is bound to change continuously. Thus, it is difficult to construct and maintain the
communities manually. For this reason, we propose the use of unsupervised machine learning to help
in the discovery and maintenance of user communities.

The rest of this paper is structured as follows. Section 2 of the paper provides an overview of related
work in user modelling and in particular the use of learning techniques in user modelling. Section 3
presents a detailed description of the proposed approach and introduces the two learning algorithms.
Sections 4 to 6, present the results of the three case studies. In all three cases, we have applied both the
conceptual clustering and cluster mining techniques. Finally, in section 7, we discuss the relative
merits and disadvantages of the two techniques as they arise in the results of the three case studies.

2. Related work

User modelling technology aims to make information systems user-friendly, by adapting the system
to the needs of the individual. With the explosive growth of the Internet and the volume of information
published on it, the need for user-adaptive systems that help people locate information of interest to
them has become imperative. User modelling technology has been successfully used in a variety of
domains related to information access: information retrieval (Brajnik and Tasso, 1994; Brajnik et al.,
1987; Kay, 1995), filtering (Balabanovic and Shoham, 1997; Maes 1994; Balabanovic and Shoham,
1995; Chen and Sycara, 1998) and extraction (Benaki et al., 1997), adaptive user interfaces (Langley,
1999; Brusilovsky and Schwartz, 1997; Chin 1989) and adaptive Web sites (Perkowitz and Etzioni,
1998, 1999; Ardissono and Goy, 2000).

A user model primarily contains information that characterise the interaction of the user with the
system and other users, if interaction between users is supported. As an example, a user model for a
service delivering news articles contains the news-reading preferences of a user. Additionally, a user
model may contain personal information about the user, such as age, occupation, etc. Further to the



models for individual users, generic user models that apply to groups of users are also widely used.
The simplest type of a generic model is a community, which is the subject of this paper and does not
presuppose the explicit provision of personal information by the users. If personal information is
available, community models are often called stereotypes. A stereotype is one of the earliest types of a
generic model that appeared in the literature (Rich, 1983) and is nowadays often encountered in digital
libraries and museums (e.g. Esposito et al., 1998; Paternò et al. 1999). Stereotypes are typically based
on external knowledge about the user, such as the user’s level of expertise or other personal
information. For example, a stereotype might link users of a certain age with a specific news category.
However, the collection of personal information is a difficult, inaccurate and often undesirable
process. It imposes a burden on the user, who needs to provide the information and it may be violating
the user’s privacy. For these reasons, we focus here on user communities, instead of stereotypes.
However, the methods presented here can easily be extended to take personal information into account
and thus construct user stereotypes.

Machine learning methods have been applied to user modelling tasks, mainly for acquiring models
of individual users interacting with an information system (e.g. Bloedorn et al., 1996; Raskutti and
Beitz, 1996; Resnick and Varian, 1997). In such situations, the use of the system by an individual is
monitored and the collected data are used to construct the model of the user, i.e., the user’s individual
characteristics. Such techniques have been used in many agent-based and multi-agent systems, which
aim to discover and recommend information on the Internet, like FAB (Balabanovic and Shoham,
1997), Syskill & Webert (Pazzani and Billsus, 1997), WebWatcher (Joachims et al., 1997) and
Amalthea (Moukas, 1997). Furthermore, machine learning techniques for user modelling have been
used in digital library services, like IDL (Esposito et al., 1998), and in news filtering systems, like
News Dude (Billsus and Pazanni, 1999; 2000). The main goal of these systems is to learn and revise
user profiles that help in proposing information on a given topic that would be of interest to the user.

In this paper we are concerned with a higher level of generalisation of the users’ behaviour: the
construction of user communities. If we assume the existence of individual models for the users of the
system, which might be constructed by a machine learning method, user communities can be
constructed by applying machine learning techniques to the user models. Fig. 1 illustrates the two
different levels of learning. In the lower part of the graph, individual user models are constructed by
observing the interaction of the user with the system. At the higher level, the user models are used to
build communities. Note that in many cases, the construction of individual user models is not possible,
e.g. in e-commerce sites where the users do not identify themselves during their interaction with the
system. In such cases, interesting usage patterns, corresponding to community models, can be
discovered by applying machine learning directly to the low-level usage data. In this paper, we
examine both cases, i.e., with and without the existence of individual user models.

The construction of user communities can be automated with the use of a learning method,
identifying similarities in the interaction of various users with the system. The choice of method
depends largely on the type of training data that are available. The main distinction in machine
learning research is between supervised and unsupervised learning methods. Supervised learning
requires the training data to be preclassified. This usually means that each training item (example) is
associated with a unique label, signifying the class in which the item belongs. The important feature of

Fig. 1. Two levels of user-model construction.
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this approach is that the class descriptions are built relative to the preclassification of the examples in
the training set. In contrast, unsupervised learning methods do not require preclassification of the
training examples. These methods form clusters of examples, which share common characteristics.
When the cohesion of a cluster is high, i.e., the examples in it are very similar, it is labelled as a class.

In the context of constructing user communities, preclassification would mean that each individual
in a training set is assigned to a known community. This is an unusual situation, in contrast to the
more common goal of wanting to form new communities, by examining the similarities between users.
Thus, the construction of user communities is a typical unsupervised learning task. Unsupervised
learning tasks have been approached with a variety of methods, ranging from statistical clustering
techniques to neural networks and symbolic machine learning. The branch of symbolic machine
learning that deals with unsupervised learning is called conceptual clustering and a popular
representative of this approach is the algorithm COBWEB (Fisher, 1987), which is used in this paper.
One representative of statistical learning is the cluster mining method that was introduced in
PageGather (Perkowitz and Etzioni, 1998), a system that associates pages in a Web site according to
their use. The second method that we evaluate here is a variant of this method.

The approach to community construction that is presented here is most closely related to a new
research area, known as model-based collaborative filtering. In standard, memory-based collaborative
filtering systems (Resnick and Varian, 1997; Basu et al., 1998), the individual user models themselves
are used to reason about the characteristics of a particular user. This is done in a nearest-neighbour
fashion, i.e., the k most similar models to the model of a particular user are retrieved and used to
recommend extensions to the model of the user that is being examined. This type of reasoning does
not involve any learning, in the sense of inferring generic models from the usage data. Such methods,
which use solely memory-based approaches, suffer from two problems: they do not scale well to large
numbers of users and they do not provide any insight as to the usage patterns that existed in the data.
Recently, these problems started to be addressed, by the development of model-based collaborative
filtering methods (Breese et al, 1998) and hybrids of model and memory-based methods (Pennock et
al, 2000). The models constructed by these methods are community models.

3. Constructing and Evaluating Community Models

3.1. Web usage mining

In principle, the task of constructing community models on the Internet with the use of unsupervised
learning is a Web usage mining task, as described for instance in (Cooley, 2000). Communities are
built on data collected from the users during their interaction with the system. The goal is to identify
interesting behavioural patterns in the collected usage data and base the community models on these
patterns. Web usage mining is a natural extension to the various statistical usage figures that system
administrators commonly collect. At the level of discovering interesting patterns, usage mining
provides more detailed and usable information about the usage of the service than the widely used
statistical figures (Paliouras et. al., 1999). However, the discovery of the communities per se does not
provide much more information than that provided by memory-based collaborative filtering. In order
to turn the patterns discovered with the use of unsupervised learning into actionable knowledge, a
further post-processing stage is necessary. The result of this stage is the model of each community,
i.e., its characteristic features.

The stages of getting from the data to the community models are the same as those of any other data
mining task:

Data Collection. During this stage, data from various sources are gathered and their content and
structure is identified. Depending on the type of access, the information that is collected varies:
queries, profiles or navigation logs. This paper presents in detail the results of three different case
studies, where communities are constructed from the three different types of usage data.

Data Pre-processing. This is the stage where data are cleaned from noise, their inconsistencies are
resolved, and they are integrated and consolidated, in order to be used as input to the next stage of
pattern discovery. In this work, we pay particular attention to the extraction of training data from
queries, profiles and navigation logs. In all three cases, the objective is the same: engineering of
appropriate features that describe the behaviour of the user and allow the discovery of similarities
among different users.



Pattern Discovery. Given the data in the appropriate form, interesting patterns are discovered with
the use of machine learning techniques, such as clustering, classification, association rule discovery
etc. In this paper we have opted for the use of unsupervised learning, as the most natural candidate for
constructing groups of users, based on their similarities. In particular, we compare two unsupervised
learning techniques: conceptual clustering and cluster mining.

Pattern Post-Processing. In this last stage, the patterns are evaluated and translated into actionable
knowledge, which usually takes a form that is understandable to humans, e.g. by using reports, or
visualization techniques. In our approach we pay substantial attention to the characterisation of
communities and the construction of community models. The goal is to construct a prototypical model
for each community, which is representative of the participating users and significantly different from
the users of other communities.

The following subsections describe the problems encountered at various stages of the usage mining
process and the choices that we have made in this paper.

3.2. Data collection and pre-processing

Learning algorithms typically require that the training data be transformed into sets of objects,
where each object is described by a set of features. Usage data on the Internet appears in various
forms, depending on the type of access that the information service provides. In this work, we examine
three different types of service, covering the three most commonly used types of information access.
Due to this variety, the translation of the data into a set of objects, maintaining the information that is
useful for modelling, is a significant engineering task.

One important issue when pre-processing the data is whether we can identify individual users. This
is straightforward when the service has registered users and each interaction of the user with the
system is uniquely associated with a particular user code.1 This is the case in the information filtering
case study, where the basic training objects correspond to the models of individual users. However,
most Internet-based services are open to everyone and there is usually no mechanism in place for
capturing the identity of the user. This is the situation in the other two case studies, i.e., query-based
retrieval and Web-site navigation. In those cases, there are no models for individual users and
community models are constructed directly from low-level usage data. Learning can then be achieved
by changing the definition of the objects in the training set. Since the data cannot be divided on the
basis of user codes, other “units of interaction” need to be defined, e.g. access sessions in Web-site
navigation. These basic units form the basis for the discovery of similarities.

Another important pre-processing issue is the selection of the feature set, which describes the
training objects. Each object is a fixed-length feature vector. Therefore, a limited set of features need
to be selected, in order to translate the usage data into a set of objects. The particular choice varies in
each case study. In the simple news-filtering case study, where the training objects correspond to user
models, each object is simply described in terms of the news categories that the user has selected. In
the Web-site navigation case study the training objects correspond to access sessions and we have
used two different feature sets: the constituent pages of the session, without any information about the
order in which they appear, and the transitions between pages, capturing the sequential nature of the
session. Finally, the case of query-based retrieval, where the training objects are user queries, presents
an interesting generic problem: the set of keywords that can be used in a free-text query is not
restricted. In order to translate such free-text queries into the desired fixed-length format, we made use
of language engineering tools and a domain-specific classification hierarchy, i.e., an ontology. With
the aid of these resources, we were able to move from a large number of very specialised keywords to
few generic terms. The use of such resources like ontology and thesauri can be invaluable when the
usage data contains pieces of free text. More generally, external resources and in particular ontologies
are often used in user modelling systems. Empirical studies have demonstrated their importance in
user model acquisition (Bloedorn et al., 1996; Pazzani and Billsus, 1997). For example OySTER
(Müller, 1999), a multi-agent meta-search engine for information filtering, uses a predefined ontology
to classify documents (Web pages) selected by the users and then learn user profiles that are expressed
in generic ontology terms.

1 Privacy issues arise in the case of registered users, e.g. the administrator cannot disclose personal information
about the user, without the user’s consent.



3.3. Pattern discovery

Following the procedure presented in 3.2, training data in the form of feature vectors are extracted
from the usage data. Each vector is a training object, corresponding to a basic usage entity, i.e., a user
model, an access session or a user query. In this study we evaluate two unsupervised learning
methods, which process these training data, identifying interesting patterns that correspond to different
groups of objects. The two methods are called conceptual clustering and cluster mining and they are
presented below.

3.3.1. Conceptual clustering

The branch of symbolic machine learning that deals with unsupervised learning is called conceptual
clustering. Conceptual clustering is a type of learning by observation that is particularly suitable for
summarising and explaining data. Summarisation is achieved through the discovery of appropriate
clusters, which involves determining useful subsets of an object set. Explanation involves cluster
characterisation, i.e., determining a useful description for each cluster. For instance, in the news-
filtering case study, summarisation produces groups of similar user models, i.e., the communities, and
explanation generates the community models, in terms of news categories.

A popular representative of conceptual clustering is the algorithm COBWEB. It is an incremental
algorithm that performs a search to obtain a concept (cluster) hierarchy. The term incremental means
that objects are incorporated into the hierarchy as they are observed. The cluster hierarchy that is
produced partitions the object space optimally according to a heuristic called category utility (Gluck
and Corter, 1985). Category utility is a probabilistic measure of cohesion, i.e., the quality of clusters. It
is a trade-off between intra-cluster similarity, i.e., how similar are the objects within a cluster, and
inter-cluster dissimilarity, i.e., how dissimilar are different clusters. COBWEB incorporates objects
into the hierarchy using the following four clustering operators: placing the object in an existing
cluster, creating a new cluster, combining two clusters into a new one (merging) and dividing a cluster
(splitting). Given a new object, the algorithm applies each of the previous operators and selects the
hierarchy that maximises category utility.

The output of the clustering process is a hierarchy, the leaves of which correspond to single-object
clusters, i.e., the individual training objects. Moving from the bottom to the top of the hierarchy, the
size of the clusters increases, corresponding to more general concepts. In our case, each cluster
corresponds to a community, which is decomposed into sub-communities, down to the level of
individual users. Each pair of communities is disjoint, i.e., they do not contain any common users,
unless one is a sub-community of the other. This feature is desirable when each user community needs
to be treated separately, but becomes restrictive when users naturally belong in more than one
community. Another characteristic of COBWEB is that it depends on its incremental character, i.e., it
is dependent on the order of the observed objects. Some work has been done in defining alternative
category utility measures in order to prevent suboptimal clustering (Fisher, 1996).

In this work, COBWEB was chosen due to its ability to construct probabilistic hierarchies
(Thompson and Langley, 1991), which allows the selection of communities at different levels of
generality. Furthermore, the symbolic nature of the generated hierarchy facilitates the characterisation
of communities, which is necessary for constructing community models. COBWEB has also been
used as the basis in the design and evaluation of various other unsupervised learning techniques (e.g.
Fisher and Pazzani, 1991; Fisher 1996; Perkowitz and Etzioni, 1999).

3.3.2. Cluster mining

The second unsupervised learning method that we use here is cluster mining (Perkowitz and Etzioni,
1998). Cluster mining discovers patterns of common behaviour, by looking for cliques2 in a graph
corresponding to the users’ characteristic features. The algorithm starts by constructing a graph. The
vertices of the graph correspond to the users’ features, while the edges of the graph correspond to
combinations of features as they are observed in the users’ interaction with the system. For instance, if
the service is a library of computer science articles and the users issue queries about “hardware” and
“computing methodologies” an edge is created between the relevant vertices (Fig. 2). The vertices and
the edges of the graph are associated with weights, which are computed as the frequencies of the

2 A clique is a fully connected subgraph, i.e., a set of vertices, which are all connected to each other with edges.



users’ choices and their combinations respectively. For instance, in Fig. 2, the category “computing
methodologies” seems to be the most popular one among the users of the service and it is often
combined with the categories “software”, “hardware” and “computing milieux” and less so with the
category “mathematics of computing”.

One modification that we have made to the basic method is to normalise edge frequencies by
dividing them with the maximum of the frequencies of the two vertices that they connect. The effect of
the normalisation is to remove the bias for characteristics that appear very often in many users. Using
the graph in Fig. 2, the resulting normalised graph is given in Fig. 3.

The connectivity of the resulting graph is usually high. For this reason the method requires the use
of a threshold, aiming to reduce the number of edges. In our example, if the threshold equals 0.1 the
edge between “mathematics of computing” and “computing methodologies” is dropped. The
appropriate threshold value differs for different applications and cannot be set to a constant value. In
our case studies, we experiment with a range of different threshold values.

One final difference of our implementation of cluster mining, compared to that proposed in
(Perkowitz and Etzioni, 1998), is that we do not restrict the size of the cliques, but we generate all
maximal cliques3 of the graph. Despite the large theoretical complexity of the clique-finding problem,
in practice the algorithm that we have implemented (Bron and Kerbosch, 1973) is fast.4 The efficiency
of the algorithm allowed a full investigation of the effect of the connectivity threshold.

3 Maximal cliques are cliques that are not subgraphs of other cliques.
4 It generates all cliques (approx. 200) of a large graph (239 vertices), with an average clique size of 100 vertices,
in about 5 minutes on a common SparcServer.
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3.4. Pattern post-processing and evaluation

3.4.1. Constructing community models

The final goal of our approach is a set of models, which correspond to behavioural patterns for
different types of user. Clustering the users into communities with common behavioural characteristics
is a first step towards this goal, but does not provide the desired models. In order to obtain these
models we need to identify the descriptive characteristics of each community. The way in which this is
achieved differs for different clustering methods, but the underlying ideas are common:

1. A community model can be expressed in terms of the same features as the underlying usage data.
For instance, if the usage data simply record the pages in a site that are visited by a user, the
communities will also be described in terms of the pages in the site. In a more formal language,
given a feature set A that describes the objects in the data set, the model of a community Cj

consists of a subset of A, Aj, which characterizes the members of the community, i.e., which are
usually present in the models of the community members.

2. The selection of the descriptive features is done with the aid of simple metrics, which are based
on the idea that a feature is characteristic of a community if its frequency within the community is
significantly higher than its frequency in the whole data set. The natural choice of metric differs
for different clustering methods. For the conceptual clustering algorithm, we have used a
squared-difference measure, called FI (frequency increase) (Paliouras et al., 1998), motivated by
the category utility search heuristic that these algorithms use. Given a feature c, with default
frequency fc, if the frequency of this feature within a community j is fj, the metric is defined as a
simple difference of the squares of the two frequencies: FI= fj

2- fc
2. The definition of a

representative feature for a community, is simply that FI > α, where α is the required level of
frequency increase.

In contrast to conceptual clustering, cluster mining does not attempt to form independent user
groups. The clusters generated by this method associate characteristic features of the users directly. In
this manner, there is no need for an additional stage of community characterisation, as for the
conceptual clustering approach. Each clique identified by the cluster mining algorithm is a behavioural
pattern. If needed, a user can be associated with the clique(s) that best match(es) the user’s individual
model. This is not attempted here, as the focus of our work is on the discovery of the behavioural
patterns, rather than the user groups themselves.

3.4.2. Evaluation criteria

Having outlined the method to obtain the community models, we need to decide on the desired
properties of these models. Our primary objective is to provide useful community models. In order for
the models to be useful to humans (e.g. users or service providers), they need to be relatively few in
number and small in size. As a result, the number of models and their average size are two important
measurable criteria for the success of a method. The exact figures for these criteria depend on the
nature of the problem, e.g. the size of the feature set.

However, a digestible set of models is not necessarily interesting. When there are only small
differences between the models, accounting for variants of the same community, the segmentation of
users into communities is not interesting. Thus, we are interested in community models that are as
distinct from each other as possible, i.e., they share as few features as possible. We measure the
distinctiveness of a set of community models M by the ratio between the number of distinct features
that are covered by these models to the size of the model set M. In other words, we count the number
of distinct features that appear in at least one community model and divide that by the sum of the sizes
of all models, where the size of each model corresponds to the number of features that it contains.
More formally, if there are J communities in M and Aj the features used in the j-th model,
distinctiveness is given by the following equation:

∑
=

j j

j j

A

A
MenessDistinctiv

||
)(
U

(1)

In the best case, where the community models have no common feature, Distinctiveness takes the
value 1, as the numerator becomes the same as the denominator. In the worst case, where all models
are identical, Distinctiveness becomes 1/|J|, where J the set of community models that have been
discovered.



Since we are interested in a small number of models that are distinct, the empty model set trivially
satisfies our criteria. In a more realistic situation, we might have a small set of distinct models, which
account for only a small part of the usage of the system. In order to avoid this problem, we introduce a
further criterion that counterbalances distinctiveness. The new criterion is the overall coverage of the
community models, i.e., the proportion of features covered by the models. Using the same notation as
above, the coverage of the set of models M is:

(2)

The difference of equation (2) to equation (1) is in the denominator, which now measures simply the
total number of features that are used to describe the objects. When the numerator becomes equal to
this number, Coverage takes its maximum value 1, while the minimum value 0 corresponds to the case
where no community models are discovered.

The simultaneous optimisation of distinctiveness and coverage by a set of community models
indicates the presence of useful knowledge in the set. It should be stressed that these evaluation
metrics are independent of the biases of the community construction methods and thus constitute
objective criteria for the evaluation of the methods.

4. Case study A: query-based information retrieval

4.1. Experimental setting

In the first case study we examined an information retrieval service, using free-text queries. The
service that we have looked at is the Networked Computer Science Technical Reports Library
(NCSTRL). NCSTRL (http://www.ncstrl.org/) is an international collection of computer science
technical reports from University departments and research laboratories. In this Web-based digital
library, a user inserts keywords, which correspond to titles, abstracts and author names of the technical
reports, in a “simple” or a “fielded” form. The system returns the technical reports, which match the
keywords, sorted by the providing institutions. The dataset for the experiment contained more than
5,000 user queries stored in the logs of two NCSTRL nodes: NCSR “Demokritos” (Athens, Greece)
and FORTH (Heraklion, Crete, Greece).

The aim of our experiment was to identify communities of NCSTRL users, who are interested in
similar computer science topics. In other words, we would like to automate the construction of interest
groups for the digital library in question. One of the problems that arise when processing free-text
retrieval data is the variety of terms that are being used in the queries. The frequency of term co-
occurrence in this type of query is too low to allow the discovery of significant similarities. For this
reason, we pre-processed the queries with the aid of language engineering tools, before the execution
of the learning algorithms. Since the queries referred to Computer Science topics, we replaced the
keywords in each query with the most relevant of the eleven top-level categories of the ACM
Computing Classification System (http://www.acm.org/class/). The ACM Computing Classification
System is an ontology for Computer Science, built by the Association for Computing Machinery. It is
almost a tree – with the exception of some cross-references at the same level of the tree – and consists
of 4 levels. Each category (node) in the ontology corresponds to a specific research area of Computer
Science, which is described by a short phrase, e.g. “automatic programming” or “integrated circuits”.
We enriched this procedure using WordNet, a general thesaurus (Miller, 1990), which helped in
finding synonyms of the query keywords that did not match the ACM Classification terms.

The pre-processing procedure consisted of the following two stages:
1. Query tokenisation and lemmatisation. In this stage, the keywords in each query were separated

and substituted by their lemma, e.g. ‘working’ became ‘work’. Function words such as articles,
prepositions and conjunctions were dropped. The same transformation was done for the phrases
representing ACM categories.

2. Category Matching. The query keywords were compared with the terms used in the ACM
category descriptions, at all levels of the hierarchy. The keywords that did not match any term in
the ACM categories were substituted by their synonyms retrieved from WordNet. If none of the
synonyms matched the ACM terms, then this query keyword was dropped. Each surviving query
was mapped onto a set of top-level ACM categories, called the ACM query, as follows:
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a. Each query was compared to ACM category descriptions, at all levels of the hierarchy, and
two figures were computed: the query coverage ratio, which is the number of query keywords
appearing in an ACM description divided by the total number of keywords in the query, and
the ACM category coverage ratio, which is the number of terms in an ACM category
description appearing in a query, divided by the total number of terms in the description.

b. For each query, all ACM categories that matched the query were sorted in descending order of
the two ratios, giving priority to query coverage.

c. The first ACM category in each ranked list was chosen and its top-level ancestor in the ACM
classification hierarchy was added to the corresponding ACM query.

d. The query keywords covered by the ACM query were dropped and the process was repeated
for the remaining words.

e. The iterative process ended when either all query keywords were dropped or the ranked list of
matching ACM categories was exhausted, i.e., the remaining keywords of the query could not
be mapped onto the ACM hierarchy.

The above process filtered the queries that did not match the ACM ontology, leading to a dataset of
3,200 queries, containing top-level ACM categories as terms. This dataset contained a substantial
amount of duplication, as there were just 187 unique queries. Thus, with the use of the ACM
hierarchy, we have achieved a first level of clustering through the generalisation of the query
keywords.

Finally, the queries were translated into training objects in the feature-vector representation that the
learning algorithms use. Each query became a binary feature vector. Each bit of the vector
corresponded to one of the 11 top-level ACM categories. It was “on” when the category appeared as a
query term and “off” otherwise. The conceptual clustering algorithm constructed groups of similar
vectors, i.e., queries with common terms. The cluster mining algorithm, on the other hand, identified
cliques in the 11-node graph, which represented the co-occurrence of terms in the queries. The
experimental results for each of the algorithms are presented below.

4.2. Number and size of the community models

In this case study, COBWEB generated a hierarchy consisting of 3,107 non-leaf nodes,
corresponding to groups and subgroups of user queries. As mentioned above, the 3,200 user queries
have been clustered to only 187 unique ones with the use of the ACM classification hierarchy. For this
reason, there are only 111 nodes in the COBWEB hierarchy that have a category utility < 1.0. In these
111 “communities” there is still some uncertainty about at least one ACM category, i.e., there are
people in the community who are interested and others who are not interested in some of the
categories. Each of the remaining 2,996 groups consists of identical queries and is thus of limited
interest. Fig. 4 presents the top two levels of the hierarchy. We chose not to examine lower levels, as
the category utility scores in the second level are already close to 1.0, i.e., there is already a high
degree of agreement among the community members. Thus, level 2 is appropriate for constructing the
community models.

A (3200)

C (646)B (1803) D (751)

E (576) F (430) G (388) H (409) I (126) J (520) K (110) L (66) M (575)

Fig. 4. The top two levels of the hierarchy generated by COBWEB in case study A. Node A is the
root of the hierarchy, covering the whole dataset. The numbers in brackets correspond to the
number of objects (user queries) covered at each node.



The cluster mining algorithm groups together query terms, i.e., ACM categories, that co-occur
frequently. The feature graph in this case study represents the co-occurrence frequency between query
terms. The only external parameter in the cluster mining algorithm is the connectivity threshold, which
determines whether an edge of the graph will be removed or not. In order to examine the effect of this
parameter to the quality of the generated models, the connectivity threshold was varied from 0 to 0.95,
at 0.05 intervals. Low values of the threshold allow weaker links between ACM categories to survive,
i.e., the graph has more edges. When the threshold is 0, no edge is removed. The threshold has an
important effect on the size and the number of cliques that are discovered. The higher the connectivity
of the graph, i.e., the larger the number of edges for the same number of vertices, the more likely it is
for large cliques to exist in the graph. In the extreme case, where the vertices of the graph are fully
disconnected, there are as many cliques as the vertices and they are all singleton (1 vertex per clique).
This situation occurs for threshold values greater than 0.15 in this case study. The number of cliques
that are discovered for each threshold value also varies with the threshold. For high connectivity of the
graph, i.e., low threshold, the size of the cliques is large and therefore there cannot be many cliques in
the graph. The number of cliques generally increases as the connectivity of the graph falls.

4.3. Distinctiveness and coverage of the models

As explained in subsection 3.4, a measurable indication that a set of community models is
interesting can be obtained by optimising the distinctiveness and the coverage of the models. Since,
we are interested in the combined optimisation of distinctiveness and coverage, we would like to
present the results along those two dimensions in a combined manner. A good choice for such a
presentation is the use of Receiver Operating Characteristic (ROC) curves. ROC curves are commonly
used for cost-sensitive classification tasks, such as medical diagnosis, in order to present the trade-off
between two types of error, e.g. over-diagnosis and under-diagnosis. The two types of error are
measured by two corresponding measures, usually called sensitivity and specificity. A ROC curve is a
plot of sensitivity against the opposite of specificity (1-specificity). Adapting this idea to our
measures, we plot coverage against the opposite of distinctiveness (1-distinctiveness). We name this
type of plot a trade-off curve, in order to avoid confusion with ROC curves, since we are not
measuring sensitivity and specificity. The results that we obtained in this first case study are shown in
Fig. 5. Each curve is generated by measuring coverage and distinctiveness for different values of the
FI (frequency increase) threshold (α) and the connectivity threshold. Similar to the ROC curves, the
optimal point of maximum coverage and distinctiveness is the top-left corner of the square, while the
area underneath each curve is a measure of the overall quality of the corresponding method.

The results presented in Fig. 5 indicate that the cluster mining method is doing consistently better
than COBWEB, in terms of coverage and distinctiveness. Particularly interesting is the relatively high
value of distinctiveness, 0.61, when the coverage reaches its maximum. At this threshold level, no
edge of the feature graph is removed and only two communities are generated. Despite their fairly
large size, the two community models are very different, in terms of the features that they contain.
COBWEB, on the other hand, is only able to reach full coverage at the expense of very low
distinctiveness. A similar difference between the two methods is observed when looking at the best

Fig. 5. Trade-off curves for case study A (CM=Cluster Mining).
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result in terms of distinctiveness (excluding the point of origin). COBWEB does not reach a level of
distinctiveness above 0.5, while cluster mining reaches 0.83 at roughly the same level of coverage as
COBWEB.

4.4. Indicative community models

In order to illustrate the type of information that the community models provide, we examine here
an indicative model for each of the two methods. Table 1 presents the community models generated by
COBWEB when the FI threshold is set to 0.15. The results reveal three dominating trends,
corresponding to the three communities at the first level of the COBWEB hierarchy (see Fig. 4). The
three communities could be labelled “Computer Systems” (node B in Fig. 4), “Information Systems”
(node C in Fig. 4) and “Computing Methodologies” (node D in Fig. 4). In each of these three broad
communities there is further sub-categorisation, combining other interests of the users, e.g.
“Hardware” and “Software”. Community E serves as a “miscellaneous” cluster and does not seem to
be homogeneous. The main similarity between the queries in this cluster, is that they contain very few
keywords, usually just one. Furthermore, each of these keywords does not occur frequently enough to
justify the construction of a separate community. The construction of this “miscellaneous” cluster is an
interesting result in terms of modelling, because it shows that a subset of the users are better left
unclassified. It is important to identify this special cluster and not treat it as a normal cohesive
community.

Table 1
Community models generated by COBWEB in case study A. In brackets are the FI values.

Community Interests

E
F Computer Systems Organisation (1.0)
G Software (1.0)
H Hardware (1.0)
I Information Systems (1.0), Computing milieux (0.63), Computing methodologies (0.28)
J Information Systems (1.0)
K Computing methodologies (1.0), Hardware (1.0)
L Computing methodologies (1.0), Software (1.0)
M Computing methodologies (1.0)

Similarly, Table 2 presents the non-singleton cliques generated by the cluster mining method, when
the connectivity threshold takes the value 0.1.

Table 2
The non-singleton cliques generated in case study A. The connectivity threshold is set at 0.1.

Clique Interests

1 Hardware, Software, Computing Milieux, Computing Methodologies
2 Hardware, Software, Computing Milieux, Mathematics of Computing
3 Hardware, Computer Systems Organisation
4 Theory of Computation, Mathematics of Computing
5 Information Systems, Software, Computing Milieux, Computing Methodologies
6 Information Systems, Software, Computing Milieux, Mathematics of Computing

As expected, there is some agreement between the models generated by cluster mining and those
constructed by COBWEB, in terms of the ACM thematic categories. However, the distinction between
the three broad trends that was noticed in the COBWEB results, i.e., “Computer Systems”,
“Information Systems” and “Computing Methodologies”, is less clear in the results presented in Table
2. The cliques seem to capture more subtle relationships between thematic categories across the three
trends. An example of such a relationship is the third clique, which relates “Hardware” with
“Computer Systems Organisation”. Another intuitive relationship that did not appear in the COBWEB
results is the one between the “Theory of Computation” and “Mathematics of Computing”.



Concluding, the above results are suggestive of the usage of NCSTRL, with respect to the ACM
thematic classification hierarchy. One could envisage using the results of such an analysis to organise
the material in NCSTRL and provide an alternative method of search for computer science technical
reports. According to this alternative, the users would be guided by the system in their search, through
a “thematic map” of NCSTRL. This “map” does not have to take the hierarchical form of the ACM
classification hierarchy, but could be more adapted to the usage analysis results. For instance, different
areas of the “map” could be allowed to overlap. Furthermore, the community models could be used to
make NCSTRL a community-based system, in which the users could either choose to join different
communities or they could be assigned to communities, based on the queries that they usually issue.
On that basis, collaborative filtering could also be used to personalize the query results to the interests
of each user, according to the communities in which the user belongs.

5. Case study B: profile-based information filtering

5.1. Experimental setting

In the second case study we examined a news-filtering system. This system collects information
from various sources on the Internet and forwards it to its users, according to their profiles. The news
articles are organised by the information provider into 24 news categories, e.g. “sports”, “computers”,
etc. During their registration, the users specify a subset of these categories, which correspond to their
personal interests. This personal list of news categories constitutes the user profile, which determines
what news the user receives. The profile can be modified by the user at any point in time, reflecting
changes of interest.

The dataset for the experiment contained 1,078 user profiles, with an average of 5.4 news categories
specified in each profile. These profiles were used as the training set for the two learning methods.
Each profile was translated into a binary feature vector, specifying the news categories that the user
was interested in. As in the first case study, each bit in the vector corresponded to a category and was
“on” if the user was interested in this category and “off” otherwise. COBWEB grouped the users
according to their interests, as expressed in their profiles. The cluster mining algorithm identified
cliques in the 24-node graph, which represented the co-occurrence of news categories in the user
profiles. Thus, the cliques represented clusters of related news categories according to the users’
interests. The experimental results are presented below.

5.2. Number and size of the community models

The hierarchy generated by COBWEB in this experiment consisted of 699 nodes, of which the first
three levels are presented in Fig. 6. An interesting property of the tree in Fig. 6 is the balanced split of
objects in different branches. The communities at the same level of the tree are of comparable size.
Due to the balanced shape of the hierarchy, the choice of a set of communities is not as
straightforward as in the first case study. As it can be seen in Fig. 6, levels two and three of the
community hierarchy contain a manageably small number of communities of comparable size. For this
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Fig. 6. The top three levels of the hierarchy produced by COBWEB in case study B. The
numbers in brackets correspond to the number of objects covered at each node.



reason, we chose to examine both levels of the hierarchy, i.e., nodes {D, E, F, G, H} and {I, J, K, L,
M, N, O, P, Q, R, S, T, U, V, W}, as two separate sets of communities.

The community models generated by cluster mining for different values of the connectivity
threshold follow a similar pattern as in case study A. The average size of the discovered cliques falls
as the threshold increases and the graph becomes fully disconnected when the threshold is 0.75. The
number of cliques increases almost monotonically as the threshold increases and the connectivity of
the graph falls.

5.3. Distinctiveness and coverage of the models

As in case study A, we measured the distinctiveness and coverage of the models generated by the
two methods for different values of the corresponding thresholds. Fig. 7 presents the trade-off curves
for the models generated by COBWEB at level 2 (L2) and level 3 (L3) of the hierarchy, as well as the
models constructed by cluster mining.

Comparing the two levels of the COBWEB hierarchy, it seems that for most values of the FI
threshold, level 2 (L2) is preferable to level 3 (L3). At first this observation is surprising, because the
coverage of L2 is consistently lower than that of L3, for the same FI threshold. This is due to the fact
that the L3 communities are more specialised than the L2, i.e., the frequency increase for the
categories in the L3 communities is higher than in the more general L2 communities. Therefore, the
fact that the L2 trade-off curve is generally better than that for L3 shows that the distinctiveness in L3
is lower than in L2, at the same level of coverage. This is due to the large number of communities in
L3, which are less distinct than those in L2. This situation shows the power of the trade-off curves,
which present the interaction between the two measures and facilitate the choice of the best method.

As in the first case study, cluster mining seems to be doing consistently better than COBWEB at
both levels of hierarchy. It generates community models with high coverage and high distinctiveness.

5.4. Indicative community models

Similar to case study A, we present here indicative models for the two methods. Table 3 lists the
models for the five L2 communities discovered by COBWEB, when the FI threshold is set to 0.5.
Communities E, G and H are well-separated, corresponding to one group of people interested in the
Internet, a second one interested in economics and a third interested in computers. Group F, consists
of people interested mainly in economics and finance, but also in computers. Some interest in
computers is to be expected from the users of any system on the Internet. Finally, cluster D serves as a
“miscellaneous” category, covering people who are very specific in their choices, i.e., most categories
are not of interest to them.

An interesting property of the models in Table 3 is that a large number of news categories are not
covered. In general, these are the categories that are chosen by either too few or too many users and
are therefore not useful for characterising the communities. Filtering out these two types of category is
a desirable effect. Coverage can increase, by moving selectively to lower levels of the concept
hierarchy. For instance, the children of node H give meaningful and concise communities,
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corresponding to categories that are related to computers, e.g. electronics, networks,
telecommunications. However, this is not the case for all of the five communities in Table 3. For
instance, the children of node E do not provide further meaningful subgroups in the community. The
ability to vary the generality level of the communities is an important advantage of the hierarchy
generated by COBWEB.

Table 3
Community models on the second level of the COBWEB hierarchy. In brackets are the FI values

Community Interests
D
E Internet (0.55)
F Economic Indicators (0.73), Economics & Finance (0.68), Computers (0.6),

Transport (0.53), Financial Indicators (0.5)
G Economic Indicators (0.58), Economics & Finance (0.61)
H Computers (0.53)

Table 4 presents the non-singleton cliques generated by cluster mining, when the value of the
connectivity threshold is 0.4. The broad qualitative conclusion from the results in Table 4 is similar to
that expressed above for COBWEB: there is a group of people who are mainly interested in economic
and financial news (cliques 3, 5 and 6), another group who combine such interests with more technical
news related to computers (clique 1) and finally those people who are purely technically oriented
(cliques 2 and 4). Despite their similarity, the community models in Tables 3 and 4 are not identical.
For instance, cluster mining discovers a strong link between Computers and Telecommunications that
was not discovered by COBWEB. In this manner, cluster mining confirms and extends the
relationships that were discovered by COBWEB. Interestingly, cluster mining has discovered a further
trend corresponding to people who are interested in entertainment electronics and sports (clique 7).

Table 4
The non-singleton cliques generated in case study B, when the connectivity threshold is 0.4

Clique Interests
1 Telecommunications, Computers, Internet, Industries, Economics/Finance
2 Telecommunications, Computers, Networks
3 Telecommunications, Economic indicators, Economics/Finance
4 Hardware, Software
5 Financial indicators, Economic indicators, Economics/Finance
6 Financial indicators, Economic indicators, Financial markets
7 Sport, Entertainment electronics

Concluding, the community models derived by the two clustering algorithms can be used in several
ways to improve the news-filtering service. For instance, based on the assignment of users to
communities, the system could make suggestions to the users about news categories that might interest
them, but they have not included in their profile. Furthermore, if the users have agreed to share
personal information, the system could suggest to each user, other users with similar interests for
further communication. Moreover, the service is associated with a Web site providing on-line news.
This site is organised according to the 24 news categories that were used here. The results presented
above could be used to modify the organisation of the site, tailoring it to the interests of different
communities. Such a re-organisation of the site, assumes that the communities constructed using the
news-filtering data, apply also to the visitors of the site. This assumption should be verified by looking
at the navigational behaviour of the visitors of the site, which is the subject of case study C.

6. Case study C: Web-site navigation

6.1. Experimental setting

In the third case study we examined the construction of user communities from access log data in a
Web site. The aim here was to identify patterns in the navigational behaviour of the visitors. For this
experiment, we used the access logs of the Advanced Course on Artificial Intelligence (ACAI ’99)



Web site (http://www.iit.demokritos.gr/skel/eetn/acai99/). The log files consisted of almost 5,200
Web-server calls (log file entries) and covered the period of between 7 and 26 of May 1999. Each log
entry recorded a visitor's access date and time, computer IP address and domain name, and the target
page (URL).

In order to construct a training set for the clustering algorithms, the data in the log files passed
through two stages of pre-processing:
1. Access sessions were extracted.
2. The paths recorded in the access sessions were translated into feature vectors.

Extracting access sessions from log files is a complex procedure, in which uncertainty plays a
significant role. This process involves the following stages:
1. Grouping the hits by date and IP address.
2. Selecting a time-frame within which two hits from the same IP address can be considered to

belong in the same access session.
3. Grouping the pages accessed by the same IP address within the selected time-frame to form a

session.
In order to select the time-frame, we plotted the frequency distribution of the page transitions in

minutes. According to this distribution, transitions from one page to another, which are done with a
time interval longer than one hour, had almost zero frequency. Thus, a sensible definition of the access
session is a sequence of page transitions for the same IP address, where each transition is done at a
time interval smaller than one hour. Based on this definition, our log files consisted of 1,006 access
sessions.

Concerning the translation of access sessions to feature vectors, we examined two alternative
approaches. In the first approach each feature in the feature vector represented the presence of a
particular page of the Web site in the session. There were 41 pages in the site that were visited at least
once, and the feature vector consisted of 41 binary features. In the second approach, we used
transitions between pages, rather than individual pages as the basic path components. Clearly the
number of all possible transitions between 41 pages is prohibitively large. Even the number of
different transitions that appear in the log files is very large. Thus, we needed a method to reduce the
number of features. This reduction was achieved by examining the frequency distribution of the
transitions from one page to another. We decided on a cut-off frequency of 20, which was the point
where the distribution was becoming flat. As a result, transitions that occurred fewer than 20 times in
the training data were removed from the feature set. Additionally we removed all transitions from a
page to itself. As a result, 27 transitions survived this selection and were used to form the binary
feature vector.

Thus, in the first representation of the problem (page representation), COBWEB generates
communities based on the number of common pages among different sessions. The cluster mining
algorithm constructs groups of pages, which often co-occur in access sessions. In the second
representation (transition representation), each binary vector corresponds to a sequence of page
transitions. Thus, COBWEB generates communities on the basis of common transitions among
sessions, while cluster mining identifies clusters of co-occurring page transitions. Some of the desired
results in this case study are: paths that are commonly followed by different groups of people, pages
that people often visit in the same session through different paths, etc. Such information is valuable for
the adaptation of the site to the preferences of the users.

6.2. Number and size of the community models

As explained above, we did two different experiments with two different feature sets. In the first
test, COBWEB generated a hierarchy of 1,752 nodes. Starting at the top node and moving down the
hierarchy, the set of 1,006 sessions was divided into two subsets, each of which was subdivided into
three smaller subsets. Thus, at the second level of the hierarchy there were six clusters. This is a
manageable number of clusters to examine the characteristics of the community models.

In the second test, where sessions are represented as sets of transitions, COBWEB generated a
hierarchy of 1,888 nodes. Focusing again on the top nodes of the hierarchy, the set of 1,006 sessions
was first split into three subsets, which where further subdivided into eight subsets on the second level.
We concentrated our analysis on this set of eight clusters.

The cluster mining algorithm was also tested using both representations. An interesting difference
of the results in this case study with the results in the previous case studies is that the number of



cliques for both representations is very large for small values of the connectivity threshold. As the
connectivity threshold increases, the number of cliques decreases quickly and then increases slowly to
reach the terminal situation, where each community corresponds to a single page or a single transition
between pages. The large number of cliques for small connectivity thresholds is a result of the high
connectivity of the corresponding graphs. For instance, in the case of the page-based representation,
when the threshold value is 0 the graph is fully connected and therefore forms a single clique of 41
nodes. As some of the edges are removed, this large clique breaks into a large number of highly-
overlapping cliques. When the connectivity decreases further, the cliques become more disjoint and
their number decreases. However, it does not go far below the terminal level, where we have only
singleton cliques.

6.3. Distinctiveness and coverage of the models

The aim of examining the trade-off between coverage and distinctiveness in this case study is two-
fold: to compare the two learning methods, as in the previous two case studies, but also to examine the
appropriateness of each of the two representations. Figs. 8 and 9 present the trade-off curves for the
two different representations of the problem.

As it was the case in case studies A and B, cluster mining performed generally better than
COBWEB, independently of the representation that was used. The results with the transition
representation were particularly good, achieving a high level of both coverage and distinctiveness.
COBWEB also performed better using this representation, which is an indication that the use of
transitions, as the basic building block, allows the construction of interesting navigation patterns for
user communities. Some idea of the patterns that were discovered can be gained by examining
indicative community models, as explained in the following section.

6.4. Indicative community models

As in the previous two studies, we present here indicative models for the two methods, using the
two different representations of the problem. Tables 5 and 6 show the community models discovered
by COBWEB, when the FI threshold is set to 0.05. In the second column of Table 5, the pages in each
community model are presented in decreasing order of frequency increase, i.e., the most representative
pages are near the beginning of the list. Community D serves as a filter for the users who access a
small number of pages (typically one). There does not seem to be a particular preference for some
pages within this community. Community F groups a large number of users who visited only the first
page of the site. In general the three first sibling communities (D, E, F) consist of short sessions. The
longer sessions are assigned to the last three communities (G, H, I), which are hardly differentiable by
the models that are generated. Thus, the main conclusion of this experiment is that looking at the
sessions as bags of pages does not help in analysing the navigational behaviour of the users of the site.

Fig. 8. Trade-off curves for the page
representation of the case study C.
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As in all of the experiments with COBWEB that have been presented in this paper, the first
community in Table 6 is large and does not have a representative model. It clusters together mainly
small sessions, including the large number of sessions, in which only the first page of the site was
visited. In other words, the communities D and F in Table 5 are grouped together into one community
(A) in Table 6. The other community models consist of sequences of page transitions, sorted in
decreasing order of frequency increase. The first observation is that there are clear differences between
the models. More interestingly, however, the transitions in most of the communities seem to make up
paths through the pages. This is not imposed by the representation, which encodes transitions between
pairs of pages, rather than complete paths. The representative paths for the communities express very
interesting navigational patterns. For instance, the users of the large community B, seem in general to
follow the path: (1→19→23→24→25). Page 24 contains registration information for ACAI ’99 and
page 25 is the registration form. Thus, the community consists of visitors who were interested in
registering for the course. This observation could be utilized in several ways by the administrator of
the site, e.g. by adding a direct link from page 1 to page 25, or by suggesting a transfer to page 25,
once the transition from page 1 to page 19 is observed. Thus, the results of COBWEB confirm the
suspicion that the transition representation provides interesting behavioural patterns.

Table 5
Community models for the second level of the COBWEB hierarchy, using pages as features

Community Pages
D
E 31,1,30
F 1
G 1,22,20,31,27,28,7
H 1,31,22,27,20,2,19,30,9,28,10,23,24,7,15,29,3,14,26,17,11,12,25
I 1,24,19,23,22,25,31,10,30,14

Table 6
Community models for the second level of the COBWEB hierarchy, using transitions as features

Community Transitions
A
B 24→25, 23→24, 1→24, 1→19, 19→23
C 1→22, 22→20, 20→31, 31→27, 27→7, 19→23
D 22→31, 1→22
E 22→27, 1→22
F 1→30
G 1→30, 8→1, 1→8
H 30→31, 1→30

Similarly, Tables 7 and 8 present indicative community models discovered by cluster mining for the
two representations. The connectivity threshold is 0.35 in the page representation and 0.2 in the
transition representation. In the page representation, the results are as inconclusive as those generated
using COBWEB. In contrast, using transitions to represent access sessions, the results are much more
interesting. The cliques in Table 8 resemble closely the community models for COBWEB in Table 6.
COBWEB’s community B is a combination of two cliques: 1 and 2. Community C is also a
combination of three cliques: 4, 6 and 10. Communities D, G and H can be associated to cliques 3, 8
and 5 respectively. This agreement in the results generated by the two different algorithms is a further
indication that the transition representation is more appropriate than the page representation for
modelling navigational behaviour. The breakdown of community models from Table 6 to multiple
cliques in Table 8 shows that the communities generated at the second level of the COBWEB
hierarchy are broader than the communities to which the cliques in Table 8 correspond.

Concluding this case study, the above analysis justifies the claim that Web usage mining provides
much more actionable knowledge than the simple Web usage statistics that are commonly collected by
system administrators. The results obtained by usage analysis can be used to modify the structure of a
Web site, in reaction to the interests of the visitors and/or make the site adaptive to different types of
visitor. Furthermore, the patterns that we obtained when using transitions between pages as the basic



building block for analysis, seem much more interesting than the patterns discovered by the usual bag-
of-pages approach. Higher-order representations, i.e., longer sequences of page transitions, may be
interesting, but are likely to increase the dimensionality and reduce drastically the density of the
training data. This can have a seriously negative effect on the ability of the learning algorithms to
generalise.

Table 7
The non-singleton cliques in case study C,
using the page representation. The connectivity
threshold is set to 0.35

Table 8
The non-singleton cliques in case study C, using the
transition representation. The connectivity threshold
is set to 0.2

Clique Pages Clique Transitions
1 22,27,20 1 1→19, 19→23, 23→24, 24→25
2 22,27,31 2 1→24, 24→25
3 22,19 3 1→22, 22→31
4 2,9 4 1→22, 22→20
5 3,26 5 1→30, 30→31
6 4,5,6,21 6 22→20, 20→31, 31→27
7 10,23 7 22→20, 20→27
8 11,12 8 1→8, 8→1
9 11,15 9 1→9, 9→2
10 15,29 10 20→31, 31→27, 27→7
11 16,18 11 19→23, 23→14
12 23,24,19 12 23→14, 27→7
13 23,24,25 13 1→2, 2→11
14 28,27 14 2→11, 11→12
15 28,31 15 1→23, 23→24
16 37,38

7. Conclusions

Efficient and effective access to on-line information becomes increasingly critical as the amount of
information that becomes on-line increases at an overwhelming pace. For this reason the number and
the variety of services for delivering information over the Internet is continuously increasing. In the
three case studies that were presented in this paper we examined three of the most commonly used
types of information service: query-based retrieval, profile-based filtering and Web-site navigation.
The common objective in all three studies was to analyse the behaviour of the users of the service and
to provide useful information to the provider, in order to improve the service, either through its re-
organisation or through its personalisation. The approach that we have adopted was to construct user
communities, corresponding to groups of users with similar behaviour. The end result was a
behavioural pattern for each community, which provides much richer information to the provider than
the commonly-used statistical figures about the usage of a service.

In all three case studies the discovered patterns are intuitive, while at the same time they reveal
interesting aspects of the users’ behaviour. As a result, they constitute actionable knowledge for the
service provider, indicating ways to improve the service. For instance, the user-friendliness of
NCSTRL could be enhanced by augmenting the keyword-based query mechanism with community-
specific thematic maps, based on the ACM classification, as mentioned in section 4.4. Similarly,
community models can be used to personalize the news-filtering service examined in section 5 and
facilitate interaction between users with common interests. Finally, the organisation of the ACAI’99
Web site could be improved, as indicated by the patterns presented in section 6.4.

One of the important technical issues that have arisen in this work was the necessary engineering of
the data collected on the three services. Each of the three studies dealt with a different type of data and
used a different method to transform these data into a training set for the learning algorithms. The
easiest case was the profile-based filtering service, in which each object was simply the profile of a
user. In the case of the query-based information filtering service we employed language engineering
tools and a domain-specific classification hierarchy, in order to reduce the dimensionality of the
problem and generate the object set. Finally, in the case of the Web site, we developed a procedure for



generating access sessions from individual requests for pages on the site. In this case study, we also
examined two different kinds of feature: individual pages and page transitions. The latter seemed to
capture more of the navigational behaviour of the user and provided better results. The conclusion of
this effort is that data engineering is an important task in the analysis of user behaviour on the Internet.
We dealt with three commonly-used types of data and proposed a solution for each.

Another important issue is the choice of the learning method, which will construct the communities.
In this work, we have looked at two methods: conceptual clustering and cluster mining. The two
methods differ significantly in the manner in which they generate interesting behavioural patterns.
COBWEB, the conceptual clustering algorithm, generates a hierarchy, which can be used to select
communities at different levels of generality. Furthermore, it generates disjoint communities, which
map each user uniquely to a community. This might be desirable in services where each user
community needs to be treated separately. However, it will not be desirable in many services, where
users naturally belong in more than one community. In those cases the cluster mining method seems
more appropriate. Another advantage of the cluster mining method is that it generates behavioural
patterns directly, without the need for community characterisation.

In addition to those basic differences of the two methods, one of the goals of the three case studies
was to perform a comparison of the two methods in terms of objective, measurable criteria. The
criteria that we used were: the distinctiveness between the community models generated by each
method and the extent to which these models cover the descriptive features of the domain, e.g. Web
pages in a site or news categories in a news-filtering system. According to these criteria, the models
generated by cluster mining seemed better than those generated by COBWEB. This is mainly due to
the directness with which cluster mining addresses the problem of pattern discovery, in contrast to
COBWEB, which requires a post-processing stage, in order to characterise the generated communities.

Despite the large differences, both in the design and in the performance of the two methods, the
examination of indicative models generated in each case study, showed substantial overlap between
the resulting models. This overlap can be interpreted as confirmation for the significance of the
discovered patterns. The cases in which the results of the two methods do not overlap are also
interesting, because they indicate that the two methods complement each other. For instance,
conceptual clustering was able to isolate the users who cannot easily be assigned to a community,
while with cluster mining we were able to identify patterns that cut across the disjoint communities
generated by conceptual clustering. Therefore, the combination of the two methods seems to be an
interesting option for further research.

Another interesting idea would be the use of machine learning to construct user stereotypes, where a
stereotype is a community model, enriched with personal information about the user. The conceptual
relationship between stereotypes and communities suggests that some of the work presented in this
paper will also be of use there. However, personal information is sensitive and hard to acquire on
Internet services.

A more substantial deviation from the work presented here, would be to extend the scope of the
work to other types of on-line service. An interesting example would be to study the users of an
Internet Service Provider, who form a less homogeneous group than the users of a specific Web site.
Furthermore, it would be interesting to model other parameters of user behaviour than ‘interest’. E-
learning applications provide an example, where community modelling could be based on the
knowledge level of the users. The fact that the learning methods presented here do not depend on the
semantics of the problem representation, suggest that they would be directly applicable to such a
problem, given the appropriate transformation of the usage data to a training set.

Concluding, this paper suggests the use of community models, as a valuable tool in analysing the
behaviour of users of Internet-based services. Furthermore, it suggests the use of learning methods to
construct these models from usage data and compares the performance of two very different methods.
The three case studies presented here provide a thorough account of the problems that are encountered
in this process and lead to a number of interesting conclusions about the performance of the two
methods on different types of service. However, the most important conclusion is that the discovery of
behavioural patterns for user communities, with the use of learning methods, is feasible and can
provide very valuable information to the users and the provider of an information service.
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